

#### SORGHUM, A KEY TO BUILD OUR FUTURE.







#### 3<sup>RD</sup> EUROPEAN SORGHUM CONGRESS

#### THE SORGHUM









## CAN SORGHUM FLOUR REPRESENT A VALID ALTERNATIVE IN GLUTEN-FREE DIET?

Dott. Stefano Bibbò CEMAD Digestive Disease Center Fondazione Policlinico Universitario Agostino Gemelli IRCCS Roma, Italy







## What is gluten free diet?

- Gluten free diet (GFD) is a complex diet without gluten containing food
- Consumption of a gluten-free diet requires a major lifestyle change (gluten is contained in a variety of foods that are commonly consumed in the Western diet)
- Foods containing wheat, rye, and barley should be avoided
- · Rice, corn, buckwheat, soybean or tapioca flours, and potatoes are allowed







## Nutritional aspects of gluten free diet

- Patients often prefer to consume industrial gluten free products (GFPs)
- GFPs are lack of vitamins, micronutrients and fiber
- Rich in lipids
- High glycemic index
- Rice and maize usually contain high amounts of nichel that worsen gastrointestinal symptoms
- If unbalanced GFD, development of nutritional deficiency or metabolic diseases







## Clinical indications for gluten free diet

- Celiac disease (recommended)
- Non-celiac gluten sensitivity (strongly suggested)
- Irritable bowel syndrome (sometimes suggested)
- Infertility (sometimes suggested)
- Autoimmune diseases (considered)





#### Celiac disease

- Celiac disease is an immune-mediated disease of the small intestine
- Triggered by the ingestion of gluten in genetically predisposed individuals
- Estimated global prevalence is 1%
- Variability of clinical manifestations (diarrhea, abdominal pain, malabsorption, dermatitis, metabolic or neuropsychiatric disorders)
- The only treatment is a strict gluten-free diet







## Non-celiac gluten sensitivity

- Clinical condition with gastrointestinal symptoms similar to celiac disease
- Absence of intestinal mucosal damage or serological alterations
- No evidence of malabsorption or mild forms
- Marked clinical response, with reduction of gastrointestinal symptoms, after the start of the gluten free diet
- Benefit from the diet for many years







#### Other clinical conditions

- GFD is a treatment option for many patients with irritable bowel syndrome
- Some cases of infertility can improve with GFD, even in the absence of obvious celiac disease
- Some condition of autoimmunity (as thyroiditis, hepatitis or entheropathies) could benefit from GFD
- Recent studies suggest a role for GFD in autism or psychiatric disorders







## What is the role for sorghum?

- Sorghum is naturally free of gluten
- · Safe and well tolerated in celiac disease or patients requiring GFD
- Modern food techniques have made sorghum based products more palatable
- Pasta, cake or baked goods are produced with satisfactory patient acceptance
- Good nutritional profile

Ciacci et al. Clin Nutr . 2007 Cayres et al., J Cereal Science, 2020







## Cereals frequently used in gluten free products compared to sorghum

|         | Carbohydrates<br>(g/100g) | Protein<br>(g/100g) | Fat<br>(g/100g) | Minerals<br>(mg/100g) |
|---------|---------------------------|---------------------|-----------------|-----------------------|
| Rice    | 73.70                     | 7.70                | 2.20            | 1.20                  |
| Maize   | 65                        | 8.80                | 3.80            | 1.30                  |
| Sorghum | 72.60                     | 10.40               | 1.90            | 1.60                  |

Moreno et al. Austin J Nutri Food Sci. 2014







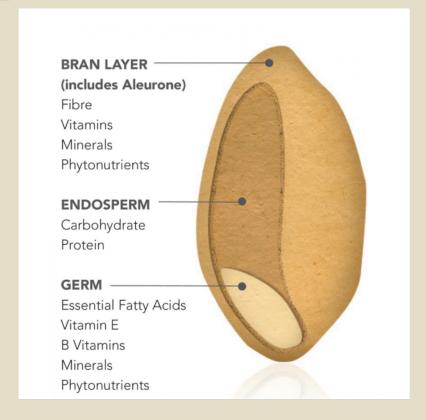
#### Sorghum foods from around the world

| Food type              | Food name                                   | Country of origin                                 |
|------------------------|---------------------------------------------|---------------------------------------------------|
| Part of the main meal  | Couscous                                    | India & Sahel                                     |
|                        | <ul> <li>Annam (Sora)</li> </ul>            | • India                                           |
|                        | Kaoliang mi fan                             | <ul> <li>China</li> </ul>                         |
|                        | Lehata wagen                                | <ul> <li>Botswana</li> </ul>                      |
|                        | <ul> <li>Nufro</li> </ul>                   | <ul> <li>Ethiopia</li> </ul>                      |
|                        | <ul> <li>Okababa</li> </ul>                 | <ul> <li>Nigeria</li> </ul>                       |
| Confectionary or sweet | <ul> <li>Rawa laddu</li> </ul>              | • India                                           |
| ,                      | <ul> <li>Kesari</li> </ul>                  | <ul> <li>India</li> </ul>                         |
| Bakery products        | <ul> <li>Roti</li> </ul>                    | <ul><li>India</li></ul>                           |
| , ,                    | <ul> <li>Bhakri</li> </ul>                  | <ul><li>India</li></ul>                           |
|                        | <ul> <li>Dosa</li> </ul>                    | <ul><li>India</li></ul>                           |
|                        | <ul> <li>Kisra</li> </ul>                   | <ul> <li>Sudan</li> </ul>                         |
|                        | <ul> <li>Injera</li> </ul>                  | <ul> <li>Ethiopia</li> </ul>                      |
|                        | <ul> <li>Mantou</li> </ul>                  | • China                                           |
| Porridge               | <ul> <li>Sankati (Mudda or Kali)</li> </ul> | <ul><li>India</li></ul>                           |
|                        | Kanji (Ambali)                              | <ul><li>India</li></ul>                           |
|                        | <ul> <li>Bogobe</li> </ul>                  | <ul> <li>Botswana</li> </ul>                      |
|                        | • Ogi                                       | <ul> <li>Nigeria</li> </ul>                       |
|                        | • Toî                                       | West Africa                                       |
|                        | <ul> <li>Nasha</li> </ul>                   | <ul><li>Sudan</li></ul>                           |
|                        | <ul> <li>Aceda</li> </ul>                   | <ul><li>Sudan</li></ul>                           |
|                        | <ul> <li>Ugali</li> </ul>                   | <ul> <li>Uganda, Rwanda &amp; Tanzania</li> </ul> |
| Beverages              | Rabadi                                      | • India                                           |
|                        | <ul><li>Pito</li></ul>                      | <ul> <li>Nigeria &amp; Ghana</li> </ul>           |
|                        | <ul> <li>Baijiu</li> </ul>                  | • China                                           |
|                        | <ul> <li>Obiolor</li> </ul>                 | <ul> <li>Nigeria &amp; Ghana</li> </ul>           |
| Breakfast              | <ul><li>Upma</li></ul>                      | <ul> <li>India</li> </ul>                         |
|                        | • Idli                                      | <ul><li>India</li></ul>                           |
|                        | <ul> <li>Noodles</li> </ul>                 | <ul><li>China</li></ul>                           |
| Snack foods            | <ul> <li>Popped sorghum</li> </ul>          | <ul><li>India</li></ul>                           |








# But from a nutritional point of view, what do we know about sorghum?

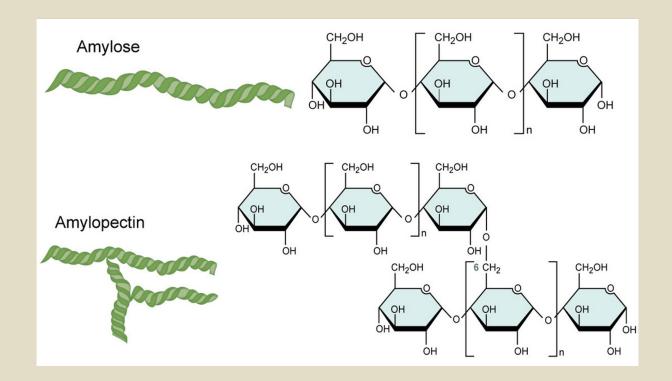




## Sorghum grain composition

- Carbohydrates
- Proteins
- Lipids
- Vitamins and Minerals
- Phenolic compounds



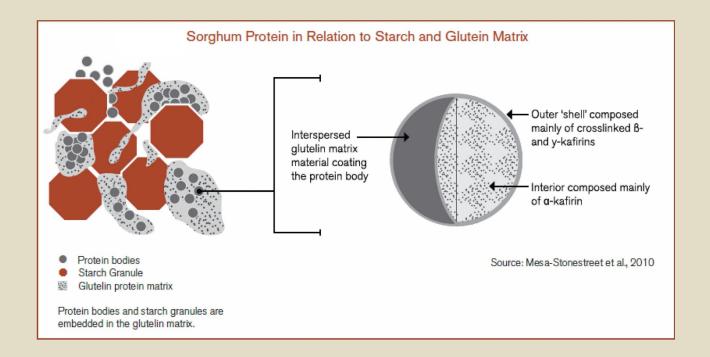







## Carbohydrates

- Polysaccharides starch (amylose and amylopectin)
- Fructosan
- Raffinose
- Sucrose
- Maltose
- Free sugar 1-2%
- Non starch polysaccharides (NSPs).





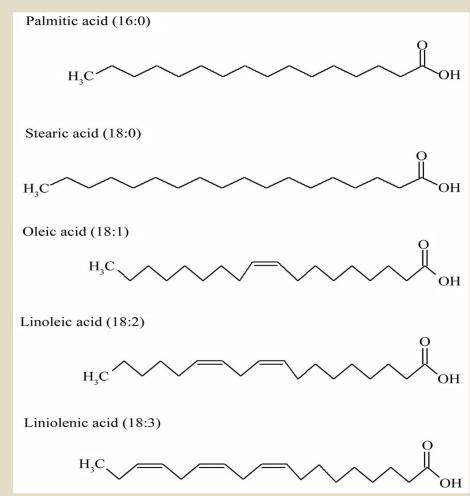



#### **Proteins**

- Albumins
- Globulins
- Glutelins
- Kafirins (high in cysteine and methionine)







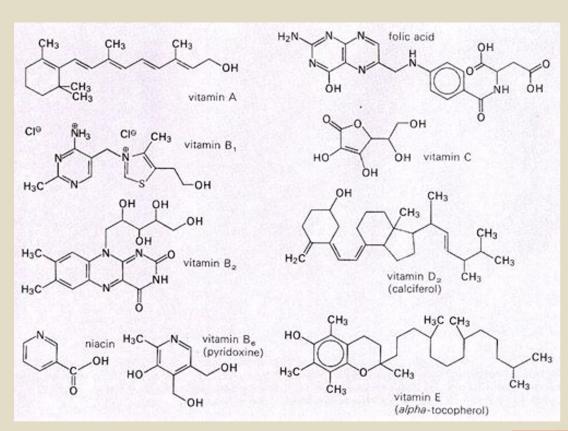





## Lipids

- Sorghum grain contain 1-3% of lipids
- Linoleic 49%
- Oleic 31%
- Palmitic 14%
- Linolenic 2.7%
- Steric 2.1%










#### **Vitamins and Minerals**

- Abundance of B-carotene and tocopherols
- Lipid-soluble vitamins (Vit. A, D and K)
- Water soluble vitamins (thiamin, riboflavin and pyridoxine)
- Minerals (Magnesium, iron, zinc, copper, calcium, phosphorus)
- Phenolic compounds (flavonoids, phenolic acids, tannins)







## Is there any evidence on the role of sorghum in maintaining health or preventing chronic disease?







#### **Anti-diabetic activities of sorghum**

| Sorghum Fraction/ Bioactive Compound | Study Model                      | Anti-diabetic mechanism                                   |
|--------------------------------------|----------------------------------|-----------------------------------------------------------|
| Flavonoids                           | Enzyme assay                     | $\downarrow \alpha$ -amylase, $\alpha$ -glucosidase, AGEs |
| Sorghum extract (ethanol based)      | STZ-induced diabetic rats        | ↑p-AMPK/AMPK                                              |
|                                      |                                  | ↓ p38:p38, PEPCK, blood glucose level                     |
| Sorghum extract (methanol based)     | High-fat-diet induced obese mice | $\uparrow$ PPAR $\gamma$ and adiponectin                  |
|                                      |                                  | $\downarrow TNF lpha$                                     |
| Grain sorghum muffins                | Healthy adult men                | ↓ Plasma glucose and insulin                              |
|                                      | Enzyme assay                     | ↑ Slowly-digestible and resistant starch                  |
|                                      |                                  | ↓ Readily-digestible starch                               |
| Flavonoids                           | Enzyme assay                     | $\downarrow \alpha$ -amylase, $\alpha$ -glucosidase, AGEs |
| Sorghum extract (ethanol based)      | Enzymatic assay                  | $\downarrow \alpha$ -amylase, $\alpha$ -glucosidase       |
| Extruded Sorghum Drink               | Healthy adults                   | ↓ Postprandial glycemia                                   |
| Flavonoids                           | Enzyme assay                     | $\downarrow \alpha$ -amylase, $\alpha$ -glucosidase, AGEs |
| Sorghum extract                      | STZ-induced diabetic rats        | $\downarrow$ pAMPK and macrophage infiltration            |

Amarakoon et al., J Sci Food Agric, 2021







#### Anti-atherosclerotic activities of sorghum

| Sorghum fraction/Bioactive compound | Study model                                                          | Anti-atherosclerotic mechanism               |
|-------------------------------------|----------------------------------------------------------------------|----------------------------------------------|
| Sorghum Lipids                      | Enzyme assay                                                         | ↓ HMG CoA Reductase                          |
| Whole Sorghum                       | Mice                                                                 | ↑ HDL cholesterol                            |
| Sorghum Lipids                      | Hamster                                                              | ↓ Plasma non-HDL and cholesterol absorption  |
| Sorghum Lipids                      | Hamster                                                              | ↑ HDL cholesterol and <i>Bifidobacterium</i> |
| Sorghum Phenolics                   | HFD fed rats                                                         | ↓ Plasma cholesterol and triglycerides       |
|                                     | STZ-induced diabetic rats                                            |                                              |
| Sorghum Phenolics                   | HUVECs                                                               | ↑ HO1 and eNOS expression                    |
|                                     |                                                                      | ↓ ICAM1, MCP1, NOX4 and CD39 expression      |
| Sorghum Phenolics                   | Human blood samples from healthy males and females after 8 h fasting | ↓ Platelet aggregation and PMP release       |

Amarakoon et al., J Sci Food Agric, 2021







#### **Anti-inflammatory activities of sorghum**

| Bioactive compounds                                                      | Study model                                           | Anti-inflammatory mechanisms                                                                          |
|--------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Sorghum bran extract                                                     | TPA-induced mice                                      | ↓ Ear thickness<br>↓ iNOS and COX-2                                                                   |
| Phenols                                                                  | Red blood cells<br>PMN cells<br>PBMC cells            | ↓ AAPH-induced oxidative damage ↓ ROS, cell migration ↑ IL-6, MCP-1, MIP-1 $\alpha$ and MIP-1 $\beta$ |
| Caffeoylglycerols Apigenin Apigeninidin                                  | LPS-induced RAW 264.7 cells<br>LPS-induced PBMC cells | ↓ iNOS and COX-2<br>↓ COX-2<br>↓ PGE2                                                                 |
| Kafirin                                                                  | LPS-induced THP-1 cells                               | ↓ IL-1 $\beta$ , IL-6 and TNF- $\alpha$<br>↓ ROS<br>↓ pERK and pJNK                                   |
| Phenols                                                                  | HUVECs                                                | ↑ HO1 and eNOS<br>↓ NOX4<br>↓ MCP-1 and ICAM1                                                         |
| Triacylglycerol Unsaturated fatty acids Tocopherols, carotenoids Phenols | LPS-induced RAW 264.7 cells                           | $\downarrow$ IL-1 $\beta$ , IL-6, and COX-2                                                           |









#### **Anti-cancer activities of sorghum (Apoptosis)**

| Bioactive compounds                   | Cancer<br>pathway | Anti-cancer mechanisms                                                       | Cancer<br>type |
|---------------------------------------|-------------------|------------------------------------------------------------------------------|----------------|
| Hwanggeumchal sorghum extracts        | Apoptosis         | ↑ p53                                                                        | В              |
|                                       |                   | ↓ Expression and phosphorylation of STAT5b/IGF-1R                            | In vivo        |
|                                       |                   | $\downarrow$ HIF-1 $\alpha$ , Bcl-2, Breast tumor kinase (Brk)               |                |
| Apigeninidin                          |                   | ↓ BcI-2                                                                      | Leu            |
|                                       |                   | ↑ BAK, BAX, caspase-9, caspase-3, cleaved PARP, lamin B                      |                |
|                                       |                   | ↑ Release of mitochondrial cytochrome C and apoptosis-<br>inducing factor    |                |
| 3-DXA extracted from red sorghum      |                   | ↑ p53; ↓Bcl-2                                                                | В              |
| 3-DXA (luteolinidin and apigeninidin) |                   | p53-independent pro-apoptotic activity                                       | С              |
| Anthocyanin-rich plant extracts       |                   | ↓ cIAP-2, survivin, XIAP, and insulin-like growth factor<br>binding proteins | С              |
| Polyphenol extracts from bran         |                   | ↑ ROS                                                                        | L              |
|                                       |                   | ↑ caspase 3, caspase 8, cleaved PARP1, cleaved caspase 3                     |                |
|                                       |                   | $\downarrow$ IGF-1, IGF-2, and survivin, $\uparrow$ XIAP, $\downarrow$ SMAC  |                |
| Sorghum extracts                      |                   | ↑p53, caspase 3 and 7                                                        | C              |
| Mixed cereal grain (MCG)              |                   | ↓ Colonic neoplasia                                                          | C              |
|                                       |                   | ↑ p53 and mRNA of CDKN1a and caspase 3                                       | In vivo        |
| Sorghum extract                       |                   | ↑ Cleaved PARP and caspase-3                                                 | С              |
|                                       |                   | ↑ pH2AX, pERK, pJNK, ATF3                                                    |                |

Amarakoon et al., J Sci Food Agric, 2021







#### **Anti-cancer activities of sorghum (Cell cycle)**

| Hwanggeumchal sorghum extracts  | Cell cycle | ↑ p53                               | В       |
|---------------------------------|------------|-------------------------------------|---------|
|                                 |            | ↑ G1 arrest                         |         |
|                                 |            | ↓ Cyclin D, cyclin E, and pRb       |         |
| High-polyphenol extracts        |            | ↑ ROS                               | L       |
|                                 |            | ↑ p21, Chk2, p-Chk2                 |         |
| Anthocyanin-rich plant extracts |            | ↑ G1 arrest                         | C       |
| Mixed cereal grain (MCG)        |            | ↑ p53, CDKN1a mRNA                  | C       |
|                                 |            | ↓ Cyclin D1 mRNA and protein        | In vivo |
|                                 |            | ↓ mRNA and protein of NOS2 and COX2 |         |
| Sorghum extract                 |            | ↑ S phase arrest, p21               | C       |
|                                 |            | ↓ CDK6                              |         |

Amarakoon et al., J Sci Food Agric, 2021 The European Research Executive Agency (REA) do not accept any responsibility for any use that may be made of the information it contains.





#### Anti-cancer activities of sorghum (Angiogenesis and metastatis)

| Procyanidin rich extract                        | Angiogenesis | ↓ VEGF                                                  | L            |
|-------------------------------------------------|--------------|---------------------------------------------------------|--------------|
|                                                 |              |                                                         | In vivo      |
| Hwanggeumchal sorghum extracts                  |              | ↓ p-STAT5, p-STAT3, VEGF, VEGF-R2                       | В            |
|                                                 |              | $\downarrow$ HIF-1 $\alpha$                             | In vivo      |
|                                                 |              |                                                         |              |
| Hwanggeumchal sorghum extracts                  | Metastasis   | ↓ Metastasis from breast to lung                        | В            |
| Hwanggeumchal sorghum extracts                  | Metastasis   | ↓ Metastasis from breast to lung<br>↓ JAK/STAT pathways | B<br>In vivo |
| Hwanggeumchal sorghum extracts  Sorghum extract | Metastasis   |                                                         |              |

Amarakoon et al., J Sci Food Agric, 2021







#### Antioxidant activities of phenolics extracts of sorghum grains

| Sorghum Source                                                                                                                                                       | Bioactive Extracts                                                                                                                              | Antioxidant Activity                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Hongyingzi, Hongzhenzhu, Dongbei<br>sorghum, Jiangsu sorghum, Jiliang 2<br>sorghum, Longza 11, black grain<br>sorghum, white Longmi sorghum.                         | Caffeic acid, <i>p</i> -coumaric acid, ferulic acid, protocatechuic acid, luteolindin, apigeninidin, luteolin, apigenin, taxifolin, naringenin. | Antioxidant activities against<br>DPPH and FRAP assays.                                                  |
| Tannin-containing sorghum varieties (Sumac, Hi-Tannin, Seredo, CR 35:5 × 2), non-tannin varieties (white variety, KARI-Mtama, red variety, ICSV-III), Mizzou, Tx430. | Condensed tannins, 3-DXA, phenolics.                                                                                                            | Induced phase II detoxifying enzymes; anti-proliferative effect on esophageal, OE33, colon cancer cells. |
| Liberty, Mr-Buster, Cracker, IS131C,<br>Shawaya Short Black 1.                                                                                                       | Phenolic extracts.                                                                                                                              | Antioxidant activities against<br>DPPH and FRAP assays;<br>Anti-proliferative effect on<br>Caco-2 cells. |
| Tx3362, Shawaya Black, Black PI Tall,<br>Hyb 107, Hyb 115, Hyb 116, Hyb 117,<br>Hyb 118.                                                                             | Total phenolics, condensed tannins, flavan-4-ols, 3-DXA.                                                                                        | Antioxidant activities against DPPH and ABTS assays.                                                     |







#### Anti-proliferative effect of phenolic extracts of sorghum grains

| Sorghum Source                                                                                                                                                                                     | Bioactive Extracts                                                                                                                                                 | Anti-Proliferative Effect                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Black sorghum varieties (Macia,<br>Sumac, PI152653, PI152687, PI193073,<br>PI1329694, PI1559733, PI1559855,<br>PI1568282, PI1570366, PI1570481,<br>PI1570484, PI1570819, PI1570889,<br>PI1570993). | Total phenolic extracts.                                                                                                                                           | Anti-proliferative effect on HepG2 and Caco-2 cells: induction G1/S cell cycle arrest, activation of p53.                                        |
| Red sorghum                                                                                                                                                                                        | 3-DXA extracts.                                                                                                                                                    | Inhibitory effect on MCF7<br>cancer cells through<br>up-regulating p53 and<br>down-regulating Bcl-2 genes.                                       |
| Dale, M81E                                                                                                                                                                                         | Vanillic acid, p-coumaric acid, ferulic acid, caffeic acid, apigeninidin, luteolinidin, malvidin-3-O-glucoside, apigenin, luteolin, trans-resveratrol, luteoferol. | Inhibitory effect on HCT116<br>and colon cancer stem cells<br>through activating p53 gene.                                                       |
| Hwanggeumchal sorghum.                                                                                                                                                                             | Total polyphenol extracts.                                                                                                                                         | Anti-proliferative effect on<br>MDA-MB 231 and MC7 cells:<br>down-regulating VEGF,<br>VEGF-R2, cyclin D, cyclin E,<br>pRb and up-regulating p53. |
| TX430, Sumac.                                                                                                                                                                                      | Total phenolic extracts.                                                                                                                                           | Anti-proliferative effect on HepG2 and HCT15 cells.                                                                                              |







#### Anti-proliferative effect of phenolic extracts of sorghum grains

| Sorghum Source                                                                                                                                                                                     | Bioactive Extracts                                                                                                                                                 | Anti-Proliferative Effect                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Black sorghum varieties (Macia,<br>Sumac, PI152653, PI152687, PI193073,<br>PI1329694, PI1559733, PI1559855,<br>PI1568282, PI1570366, PI1570481,<br>PI1570484, PI1570819, PI1570889,<br>PI1570993). | Total phenolic extracts.                                                                                                                                           | Anti-proliferative effect on HepG2 and Caco-2 cells: induction G1/S cell cycle arrest, activation of p53.                                        |
| Red sorghum                                                                                                                                                                                        | 3-DXA extracts.                                                                                                                                                    | Inhibitory effect on MCF7<br>cancer cells through<br>up-regulating p53 and<br>down-regulating Bcl-2 genes.                                       |
| Dale, M81E                                                                                                                                                                                         | Vanillic acid, p-coumaric acid, ferulic acid, caffeic acid, apigeninidin, luteolinidin, malvidin-3-O-glucoside, apigenin, luteolin, trans-resveratrol, luteoferol. | Inhibitory effect on HCT116<br>and colon cancer stem cells<br>through activating p53 gene.                                                       |
| Hwanggeumchal sorghum.                                                                                                                                                                             | Total polyphenol extracts.                                                                                                                                         | Anti-proliferative effect on<br>MDA-MB 231 and MC7 cells:<br>down-regulating VEGF,<br>VEGF-R2, cyclin D, cyclin E,<br>pRb and up-regulating p53. |
| TX430, Sumac.                                                                                                                                                                                      | Total phenolic extracts.                                                                                                                                           | Anti-proliferative effect on HepG2 and HCT15 cells.                                                                                              |







## Anti-diabetic and anti-atherogenic effect of phenolic extracts of sorghum grains

| Sorghum Source                                                                                 | Bioactive Extracts                                                                                         | Anti-Diabetic and<br>Anti-Atherogenic Effects                                                                                         |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Brown sorghum varieties (SOR 01,<br>SOR 03, SOR 08, SOR 11, SOR 17,<br>SOR 21, SOR 24, SOR 33) | Gallic acid, chlorogenic acid, caffeic acid, ellagic acid, p-coumaric acid, quercetin, luteolin, apigenin. | Inhibitory effect on $\alpha$ -amylase and $\alpha$ -glucosidase activities.                                                          |
| Hwanggeumchal sorghum.                                                                         | Phenolic extracts.                                                                                         | Reduced the serum glucose,<br>total cholesterol, triglycerides,<br>urea, uric acid, creatinine.                                       |
| KNICS-579                                                                                      | Polyphenol extracts.                                                                                       | Reduced the concentration of triglycerides, total LDL-cholesterol and glucose.                                                        |
| Red sorghum                                                                                    | Total phenolic extracts.                                                                                   | Antioxidant activity against ABTS, DPPH, FRAP assays; Inhibitory effect on pancreatic lipase, α-amylase and α-glucosidase activities. |







#### **Health benefits**

- Absence of gluten (fundamental in gluten free-diet)
- Help in control of glycemic response (low glycemic index)
- Lower level of cholesterol absorption (policosanols)
- Rich in minerals (calcium, phosphorous) and vitamins
- Reduce chronic inflammation and oxidative stress
- Relevant in cancer and cardiovascular disease prevention
- Antimicrobial and anthelminthic activities







### Our experience

Clinical characteristics of patients and results after 1 month of GFD sorghum based.

| Patients | disease | Age | M/F | Symptoms during standard GFD                       | Results after 1 month of GFD sorghum based                                 |
|----------|---------|-----|-----|----------------------------------------------------|----------------------------------------------------------------------------|
| #1       | NCGS    | 48  | M   | Glucose intolerance, overweight, deficiency anemia | Improved glucose intolerance, resolved anemia                              |
| #2       | NCGS    | 51  | M   | Megaloblastic anemia, chronic fatigue              | Improved fatigue                                                           |
| #3       | NCGS    | 31  | F   | Iron deficiency anemia, vitamin D deficiency       | Resolved anemia and vitamin D deficiency                                   |
| #4       | NCGS    | 64  | F   | headache, osteoporosis, chronic fatigue            | increased levels of vitamin D, improvement of pain related to osteoporosis |
| #5       | NCGS    | 36  | F   | Headache, chronic fatigue, vitamin D deficiency    | Resolved all symptoms                                                      |
| #6       | NCGS    | 40  | F   | psoriasis, pruritus, vitamin D deficiency          | Improved psoriasis                                                         |
| #7       | CD      | 32  | M   | Glucose intolerance, hypothyroidism                | Improved glucose intolerance                                               |
| #8       | CD      | 77  | M   | Pruritus, chronic fatigue                          | Resolved pruritus and fatigue                                              |
| #9       | CD      | 49  | M   | Overweight, chronic fatigue                        | Resolved fatigue, lost weight                                              |
| #10      | CD      | 15  | M   | Deficiency anemia, hyporexia                       | Resolved deficiency anemia, recovered appetite                             |

GFD gluten-free diet; CD celiac disease; NCGS non-celiac gluten sensitivity.





### Future perspectives?

- Well-designed clinical trials with a large sample of individuals are needed
- Longer follow-up patients to follow for many months or years
- Evaluation of the acceptance of the diet in the long term
- Evaluation of nutritional and biometric parameters (bioimpedence, magnetic resonance of muscle)
- Evaluation of the development of chronic diseases over time







#### CONCLUSIONS

- Products made with sorghum flour represent a valid alternative in GFD
- Sorghum products has a good nutritional profile
- Studies in vitro or animal models suggested several implications in maintaining health or preventing chronic disease
- Preliminary experience on humans demonstrate encouraging results in promoting well-being
- High palatability and digestibility could favor the diffusion among consumers
- The high retail price could still represent a limitation for large-scale diffusion



