

Sorghum in Argentina: Trends and new challenges

Diego Ortiz INTA - Argentina

Contents

- Sorghum production in Argentina
- Photosynthesis and transpiration efficiency
- Salinity/Alkalinity tolerance

Sorghum breeding program – INTA

- 60 years breeding
- Sorghum types: grain, forage and sweet (biofuel)
- Germplasm collection
- Research and extension

Grain

Sudan

Sileage

Sorghum in Argentina

Country	Production (Mill. Ton)	Area (Mill. Ha)	Yield (Ton/Ha)
USA	9.47 (1)	2.06 (6)	4.59 (4)
Nigeria	6.9 (2)	5.9 (2)	1.17 (12)
Ethiopia	5.2 (4)	1.85 (7)	2.81 (9)
Sudan	5 (5)	7 (1)	0.71 (21)
India	4.74 (6)	4.1 (4)	1.16 (13)
Mexico	4.3 (7)	1.3 (10)	3.31 (7)
China	3.55 (8)	0.73 (15)	4.86 (3)
Argentina	3.2 (9)	0.73 (14)	4.38 (5)
Brazil	2.1 (10)	0.75 (13)	2.8 (10)
Burkina	1.9 (11)	1.8 (8)	1.06 (15)
Niger	1.9 (12)	3.7 (5)	0.51 (23)
Mali	1.5 (13)	1.5 (9)	1 (17)
Australia	1.45 (14)	0.51 (16)	2.84 (8)
Cameroon	1.4 (15)	0.85 (11)	1.65 (11)
European Union	1.02 (16)	0.2 (21)	5.1 (2)

	2017-18	2018-19	2019-20	2020-21	
Exports					
Argentina	473	254	426	1,000	
Australia	449	91	107	500	
Ethiopia	75	75	75	75	
India	123	53	31	50	
Kenia	136	53	31	80	
Nigeria	100	100	50	50	
USA	4,839	2,437	5 <i>,</i> 480	7,600	

Sorce: USDA

Historical trends

Sorghum regions in Argentina

Area

Yield

Grain Sorghum

- High grain yield: 4-12 Tn/Ha
- Tannins
- Height: 1.1 a 1.8 m
- Stay green
- Resistance to biotic (lodging, ergot, mildew) and abiotic factors (drought, cold and salinity)
- Test Weight (Hectolitre Weight)

Gizzi and Gambin (2015)

Defining ideotypes for each region

North

- Variability in planting dates
- All maturity types
- Disease and pest pressure
- Tannins (birds)

Center

- Short and intermediate maturity
- Disease and pest pressure
- Humid fall (grain mold and sprouting)
- Tannins (birds)

South

- Short growing period
- Cold tolerance (early stage)
- Low bird pressure

Sileage Sorghum

- Biomass production
- Higher grain proportion
- Sileage and dual purpose (grain/sileage)
- Largest variability in plant types
- Stay green and sugars in stems: problems with harvesting time

Why is it important to study photosynthesis?

Photosynthesis – response to stress

3RD EUROPEAN SORGHUM CONGRESS

 H_{2} H_{2

<u>Results</u>

- Natural variation in photosynthesis in sorghum
- Loci for non-stress, cold and drought conditions
- Genomic regions identified in multiple traits
- Candidate genes
- Irrigation system for drought experiments

Ortiz et al (2017) ; Ortiz and Salas Fernandez (2021) accepted

FROM

0

SORGHUM, A KEY TO BUILD

OUR FUTURE.

SCEEDS

Photosynthesis vs stomatal conductance

Natural variation in photosynthesis

3RD EUROPEAN SORGHUM CONGRESS

Belén Rosas (Conicet)

<u>Year 1</u>	<u>Year 2</u>	<u>Year 3</u>
Field	Field	Greenhouse
334 genotypes	304 genotypes	150 genotypes

Measurements

- Efficiency of energy captured (Fv'/Fm')
- Effective quantum yield of PSII (Φ_{PSII})
- Plant Height (ALT)
- Chlorofill content (SPAD)
- Stomatal density (DE)
- Specific leaf area (AFE)
- Stomatal conductance (only in year 3)

Field experiment (2020)

Results

- Multiple markers in important traits
- GxE interaction
- Interesting trait correlations:
 - Plant height : chlorophyll content (-0.36)
 - Specific leaf area: chlorophyll content (-0.20)
- Next: Study physiological mechanisms in contrasting genotypes

WITH AID FROM THE EUROPEAN UNION

Salinity/alkalinity tolerance

Soil alkalinity

3RD EUROPEAN SORGHUM CONGRESS

Soil salinity and alkalinity

- Extensive regions with salinity and alkalinity problems in Argentina
- Sorghum can grow under these conditions and produce biomass and grain
- Soil recovery

Salinity/alkalinity tolerance

3RD EUROPEAN SORGHUM CONGRESS

Controlled conditions

Field conditions

Francois et al (1984)

Daniells et al (2001)

- Germination is key
- Sorghum is sensitive in Initial stages

The content of this promotion campaign represents the views of the author only and is his/her sole responsibility. The European Research Executive Agency (REA) do not accept any responsibility for any use that may be made of the information it contains.

ENJOY IT'S FROM EUROPE

Mutagenesis

- Mutagenesis of elite line via EMS (Lucio Lombardo y Celina Ghione)
- Mutant population (350 M lines)
- Selection in the field (germination)

Salinity/alkalinity tolerance

3RD EUROPEAN SORGHUM CONGRESS

Derived hybrid selection

M3 selection

	рН	CE (dS m)
0-20	8.1	4.5
20-40	8.0	8.3

- Up to 80% germination •
- Up to 3000 Kg/Ha yield •

'H AID FROM IE EUROPEAN UNION

Response to alkalinity

3RD EUROPEAN SORGHUM CONGRESS

Plants grown in hidroponic system

Dolores Bustos and Fernando Luna IFRGV INTA

- System allowed to differenciate contrasting genotypes
- Differences in photosynthesis
- Differential expression of phytosiderophore genes (Fe defficiency) Next step: association mapping

Concluding remarks

- Sorghum production is growing in Argentina in response to exports (China)
- Important to define ideotypes by region and use
- Grains with tannins are still used
- Public programs need to work on pre-breeding to provide adapted germplasm
- Sorghum breeding program at INTA works on abiotic stress tolerance
- Interest in research in photosynthesis for increasing yield potential

Thank you

Partners

