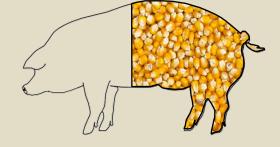


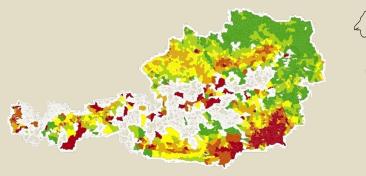
Valorization of Sorghum in pork production

Dr. Reinhard Puntigam¹ & Dr. Julia Slama²

¹Institute of Nutritional Physiology and Animal Nutrition Faculty of Agricultural and Environmental Sciences University of Rostock

²University College for Agricultural and Environmental Pedagogy





Sorghum as an alternative

- < 10%
- **10% 20%**
- 20% 30%
- 30% 40%
- 40% 50%
- **50%** -...%

Grain
sorghum
corn, sugar beet
barley, rye, wheat
canola, pea, oat

RAGT

Sorghum - Austria

Verhounig Hermann Anbau: 04.05.2021

9433 Andrä Ernte: 02.10.2021

Sorte	RZ	Pfl./ha in tsd	H ₂ 0 (%)	Nasshirse kg/ha	Trockenhirse kg/ha ¹⁾	Trockenhirse rel. in %
RGT GGUSTAV	spät	330	29,9%	16.667	13.155	106%
RGT ANGGY	spät	330	31,5%	16.944	13.015	105%
RGT HUGGO	mspät	330	26,9%	15.417	12.782	103%
RGT ALIGGATOR	mspät	330	31,4%	16.171	12.442	100%
VGL - rosario	spät	330	31,6%	16.071	12.324	99%
RGT ICEBERGG	mittel	330	29,9%	15.377	12.137	98%
RGT DODDGE	mittel	330	26,3%	14.266	11.941	96%
VGL - pr88y47	spät	330	31,8%	15.079	11.523	93%
Versuchsmittel			29,9%	15.749	12.415	100%

water % 2019 narvest dt/ha 2018 water % 2018 water % 2020 harvest dt/ha 2019 Harvest dt/ha 179.0 Ζ 198.2 P9978 440 20.5 27.2 27.6 185.3 175.2 P9900 Z 430 19.8 27.0 26.2 191.2 174.6 168.3 DKC5141 DieStefanie Zh 450 20.2 25.4 25.7 189.9 173.1 167.6 DKC5068 DieSissy Zh 420 19.7 26.3 24.5 190.9 171.9 166.0 DKC5065 Absoluto 420 25.1 19.4 24.3 185.7 169.3 165.5 380 19.3 23.9 23.6 185.0 164.2 Kerala 165.2 DKC4621 Alberto Zh 410 19.2 25.0 24.8 181.0 167.7 163.6 Z 370 P9610 18.5 24.4 23.2 192.0 184.8 162.8 410 19.1 P9363 26.1 24.3 190.2 172.1 162.5 P9415 410 19.6 26.3 25.1 196.1 176.2 159.1 DKC4162 360 18.2 23.0 22.3 187.9 161.7 158.3 19.8 24.9 24.2 166.0 **RGT Noemixx** Zh | 410 175.3 154.1 P9241 380 18.7 24.7 24.4 176.6 160.5 150.8 390 DKC4541 Arnauto 18.7 24.5 23.1 177.5 167.1 164.3 19.3 25.1 24.6 187.0 Mean

Cultivation always took place between 10 and 18 April Mayer, K., 2021

Kranewitter A., 2021

Sorghum

Storage: Fermentation of whole grain

Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs

Reinhard Puntigam 1,*0, Julia Slama 10, Daniel Brugger 20, Karin Leitner 3, Karl Schedle 3, Gabriela Wetscherek-Seipelt 3 and Wolfgang Wetscherek 3

- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany; iulia.slama@uni-rostock.de
- Institute of Animal Nutrition, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; karin.leitner@schaumann.at (K.L.); karl.schedle@boku.ac.at (K.S.); gabriela.wetscherek-seipelt@boku.ac.at (G.W.-S.); wolfgang.wetscherek@boku.ac.at (W.W.)
- * Correspondence: reinhard.puntigam@uni-rostock.de

Contents lists available at ScienceDirect

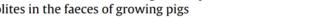
Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Effect of maize conservation technique and phytase supplementation on total tract apparent digestibility of phosphorus, calcium, ash, dry matter, organic matter and crude protein in growing pigs

E. Humer, W. Wetscherek, C. Schwarz, K. Schedle

Institute of Animal Nutrition, Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11. A-1190 Vienna, Austria


Contents lists available at ScienceDirect

Animal Feed Science and Technology

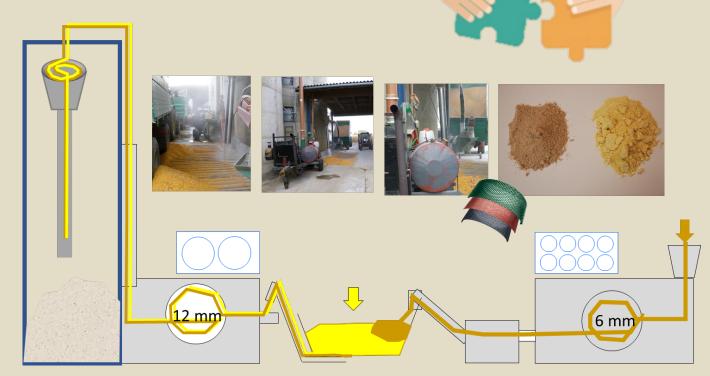
journal homepage: www.elsevier.com/locate/anifeedsci

Effects of maize conservation techniques on the apparent total tract nutrient and mineral digestibility and microbial metabolites in the faeces of growing pigs

E. Humer, W. Wetscherek, C. Schwarz, K. Schedle

Institute of Animal Nutrition, Products and Nutrition Physiology, Department for Agrobiotechnology, University of Natural Resource and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria

 \rightarrow The lower the DM content, combined with fermentation in ground form \rightarrow the higher the digestiblity of nutrients.


Sorghum - storage - Future?

Storage: fermented as "sandwich" or in mixed form "synergistic effects?"

M CONGRESS

Sorghum whole grain

Wetscherek W., 2021

Livestock Science 241 (2020) 104187

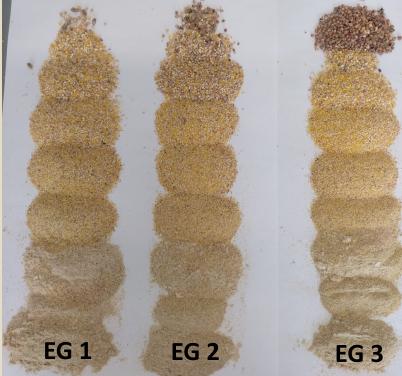
Contents lists available at ScienceDirect

Livestock Science

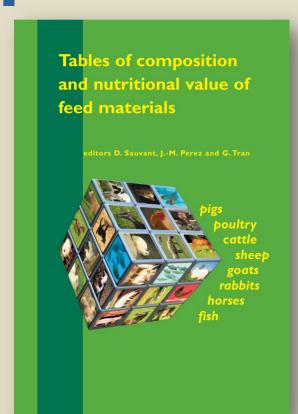
journal homepage: www.elsevier.com/locate/livsci

The effects of a partial or total replacement of ground corn with ground and whole-grain low-tannin sorghum (Sorghum bicolor (L.) Moench) on zootechnical performance, carcass traits and apparent ileal amino acid digestibility of broiler chickens

Reinhard Puntigam^{a,*}, Daniel Brugger^b, Julia Slama^a, Vivienne Inhuber^c, Brett Boden^c, Valentina Krammer^d, Karl Schedle^d, Gabriela Wetscherek-Seipelt^d, Wolfgang Wetscherek^d


- ^a Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
- ^b Institute of Animal Nutrition, Vetsuisse-Faculty, University of Zurich, Switzerland ^c Chair of Animal Nutrition, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Germany
- d Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Austria

	1	2	3
Sorghum, whole grain	-	-	10%
Sorghum, roller mill	-	10%	-
Sorghum, hammer mill	10%	-	-



Sorghum in diet preparation

Precision livestock feeding aims to match **nutrient supply** precisely with the **nutrient requirements** of the animals

characterizing nutrient requirements of animals (supply)
characterizing of nutrient availability of feedstuffs (demand)
blending ingredients to optimally match nutrient
supply to nutrient demand (formulation) Zuidhof, 2019

"As always, *proper characterization* of each raw material is key to successful feed formulation, and sorghum grain is no exception here".

Sorghum vs. Corn

Crude protein: + 10-20%

2.8 vs. 2.5% (Kafirin) Lysine per protein:

Ether extract: - 20%

36 vs. 58% of EE C18:2 and C18:3:

Xanthophylls:

Reduced content of AA and SID

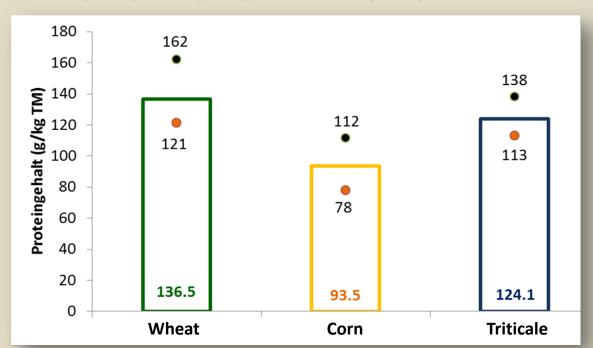
EE ↓RS ↑ ME identical?

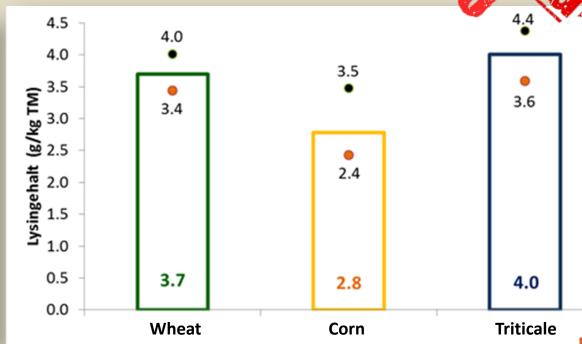
Tables of composition and nutritional value of feed materials

Sorghum

Sorghum grain (Sorghum bicolor (L.) Moench). The nutritional values for monogastric animals correspond to low-tannin varieties (n = 790). All values are expressed on an as fed basis unless otherwise noted.

Main constituents	mean	sd	Fatty acids	%FA	g/kg
Dry matter (%)	86.5	1.6	Myristic acid C14:0	0.2	0.1
Crude protein (%)	9.4	1.1	Palmitic acid C16:0	13.5	3.5
Crude fibre (%)	2.4	0.5	Palmitoleic acid C16:1	3.2	0.8
Ether extract (%)	2.9	0.4	Stearic acid C18:0	2.3	0.6
Ash (%)	1.4	0.2	Oleic acid C18:1	33.3	8.7
Insoluble ash (%)	0.1	0.1	Linoleic acid C18:2	33.8	8.9
Neutral detergent fibre (%)	9.4	1.8	Linolenic acid C18:3	2.6	0.7
Acid detergent fibre (%)	3.8	1.3			
Acid detergent lignin (%)	1.1	0.8	Fatty acids/ether extract (%)	90	
Water insoluble cell walls (%)	8.5	0.8			
Starch (%)	64.1	2.6			
Total sugars (%)	1.1	0.4			
Gross aparay (MI/kg)	163	0.4			





The nutritional variability

Wheat (n=21), Corn (n=29) und Triticale (n=27)

"precision feeding" is a...

...Balance

DEMAND

characterizing nutrient requirements of animals

SUPPLY

characterizing nutrient availability of feed stuffs

blending ingredients to optimally match nutrient supply to nutrient demand (formulation).

Sorghum in weaning pigs

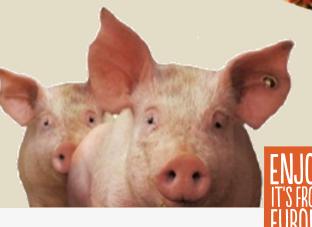
Experimental Group (EG)

		<u> </u>	• • •	
Ingredient	EG 1	EG 2	EG 3	EG 4
Corn, %	50.00	20.33	-	-
Barley, %	20.67	20.00	20.33	-
Sorghum, %	-	30.00	50.00	69.17
Soybean meal 44% CP, %	24.50	24.00	23.33	24.00
Fibre, %	0.50	0.67	0.83	1.50
Canola oil, %	-	0.67	1.17	1.00
Premix, %	4.33	4.33	4.33	4.33

NO difference in zootechnical performance (ADG; ADFI; F:G ratio)

Wetscherek et al.

Sorghum in fattening pigs (2013)


Experimental Group

	Co	orn	Sorgi	num
Stage of fattening	31-73 kg	73-119 kg	31-73 kg	73-119 kg
Whole grain corn fermented	50.4	52.1	51.4	53.0
Corn, dried	20.0	20.0	0	0
Sorghum, dried	0	0	20.0	20.0
Soybean meal, 44% CP	24.0	22.0	23.1	21.2
Fibre	2.5	3.0	2.0	2.5
Canola oil	0	0	0.4	0.4
Premix for Sorghum	0	0	3.1	2.9
Premix for Corn	3.1	2.9	0	0
MJ ME/kg	11.72	11.69	11.71	11.68

NO difference in zootechnical performance (ADG; ADFI; F:G ratio)

NO differencer in slaughter performance (lean [%], Fat thickness, mm; Muscle thickness, mm)

Sorghum in fattening pigs

Experimental Group

Grower phase (35-75 kg), %	1	2	3
Corn, dried	67.5	27.3	-
Sorghum, dried	-	40.0	66.7
Soybean meal, 44% CP	26.5	26.0	25.9
Fibre	-	0.7	1.4
Canola meal	2.5	2.5	2.5
Premix	3.5	3.5	3.5

Wetscherek et al.

Sorghum in fattening pigs

Experimental Group

Finisher phase (75-115 kg), %	1	2	3
Corn, dried	69.2	29.1	-
Sorghum, dried	-	40.0	68.6
Soybean meal, 44% CP	24.5	24.0	23.8
Fibre	-	0.6	1.3
Canola meal	3.0	3.0	3.0
Premix	3.3	3.3	

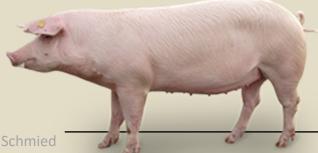
NO difference in zootechnical performance (ADG; ADFI; F:G ratio)

NO differencer in slaughter performance (lean [%], Fat thickness, mm; Muscle thickness, mm)

Sorghum "works"

Corn is 100 %, Sorghum...

Study	ADG	ADFI	FCR	Author
1	104	109	96	Brand, et al., (1990)
2	98	104	95	Hancock, et al, (1992)
3	106	106	100	Johnston et al., (1998)
4	104	100	104	Issa, (2009)
5	104	109	95	Shelton et al., (2004)
6	106	105	101	Benz et al., (2010)
Cromwell (1985 review)	98	102	97	Summery of 10 Studies


Tokach et al. (2012)

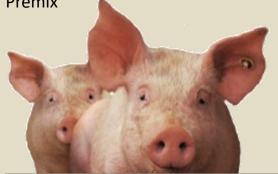
Sorghum in diets of sows

	DM, g	Corn/Sorghum, %				Corn/Sorghum (wet), %			et), %
Ingredient		preg	nant	lact	ation	preg	nant	lact	ation
Corn fermented (whole or ground), 32 % H ₂ O, 7 % CP (88 % DM)	680	-	-	-	-	33.0	-	40.0	-
Sorghum fermented 28 % H ₂ O, 9 % CP (88 % DM)	720	-	-	-	-	-	33.0	-	40.0
Corn dried, 7 % CP	880	25.0	-	30.0	-	-	-	-	-
Sorghum dried, 9 % CP	880	-	25.0	-	30.0	-	-	-	-
Wheat, 12 % CP	880	-	-	15.0	15.0	-	-	10.0	10.0
Barley, 10.5 % CP	880	50.0	51.0	26.5	28.0	43.5	44.0	23.5	24.5
Soybean meal 44 % CP	880	9.0	8.0	19.0	17.5	8.5	8.0	18.0	17.0
Fibre concentrate 30 % CF	880	13.0	13.0	4.0	4.0	12.3	12.3	3.5	3.5
Canola oil/Soy oil	999	-	-	1.5	1.5	-	-	1.5	1.5
Premix sow	950	3.0	3.0	4.0	4.0	2.7	2.7	3.5	3.5
)ci.		100	100	100	100	100	100	100	100
Anino acids: Lysine	Content in % / kg Premix								
nin ^o Lysine	9	4.0	5.0	7.0	8.0	4.0	5.0	7.0	8.4
Mathioning .**				2.5	2.5			2.5	2.6

	۸۶۰ -	10	0	100	100	100	100	100	100	100			
Premix-Ami	acia		Content in % / kg Premix										
ani	Lysine	4.	0	5.0	7.0	8.0	4.0	5.0	7.0	8.4			
Mix-K	Methionine		-	-	2.5	2.5	-	-	2.5	2.6			
bler.	Threonine		-	-	2.5	2.7	-	-	2.5	2.8			
	Tryptophan		-	-	0.4	0.3	-	-	0.4	0.3			

Sorghum in weaning pigs (12-32 kg)

Ingredient	DM g	Cor	n/Sorghun	n, %	Cor	n/Sorghun	n, %
Corn fermented (whole or ground), 32% H2O, 7 % CP (8	38% DM) 680	-	-	-	50.0	25.0	-
Sorghum fermented, 28% H ₂ O, 9 % CP (88 % DM)	720	-	-	-	-	25.0	50.0
Corn dried, 7 % CP	880	50.0	25.0	-	-	-	-
Sorghum dried, 9% CP	880	-	25.0	50.0	-	-	-
Barley, 10.5 % CP	880	19.0	20.0	22.0	23.0	24.0	25.0
Soybean meal, 44 % CP	880	23.0	22.0	21.0	20.5	19.5	18.5
Fibre concentrate, 30 % CF	880	4.0	4.0	3.0	3.0	3.0	3.0
Premix	950	4.0	4.0	4.0	3.5	3.5	3.5
		100	100	100	100	100	100
ó.	gs		C	ontent in %	6/ kg Prem	ıix	
aino de	Lysine	10.0	10.6	11.3	9.2	10.5	11.8
Premix Amino aci	1ethionine	3.5	3.4	3.3	3.0	3.2	3.4
aremi.	Threonine	4.5	4.5	4.6	4.0	4.4	4.9
Y' Ti	ryptophan	0.7	0.5	0.4	0.5	0.4	0.4



Sorghum in diets of fattening pigs

Ingredient	TM g	Grower (32 - 70 kg), %		Finishe) kg), %		
Corn fermented (whole or ground), 32 % H ₂ O, 7 % CP (88 % DM)	680	60.0	30.0	-	60.0	30.0	-
Sorghum fermented, 28 % H₂O, 9 % CP (88 % DM)	720	-	30.0	60.0	-	30.0	60.0
Barley, 12 % CP	880	14.5	15.2	16.0	17.5	18.2	19.3
Soybean meal, 44 % CP	880	20.5	19.5	18.5	16.8	15.8	14.5
Fibre concentrate, 30 % CF	880	2.0	2.3	2.5	3.0	3.3	3.5
Premix	950	3.0	3.0	3.0	2.7	2.7	2.7
		100	100	100	100	100	100

Premix Amino acids: Nethionir Threonir		Content in % / kg Premix									
in ^{o so} Lysir	ne 8.5	10.0	11.6	8.5	10.0	11.6					
, Ann Methionir	ne 2.0	2.1	2.3	2.0	2.1	2.3					
Threonir	ne 3.0	3.5	4.0	3.0	3.5	4.0					
Tryptopha	n 0.2	0.1	0.0	0.2	0.1	0.0					

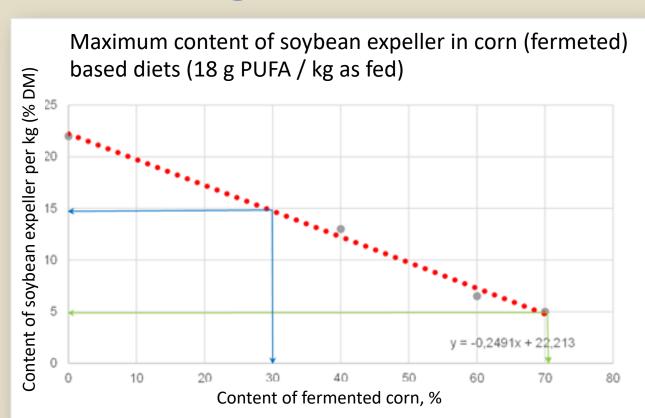
Sorghum - product quality

The **higher the content of PUFA** in the diet, the higher it is **in the body fat** – the lower its **quality**!

Sorghum to lower PUFA in diets

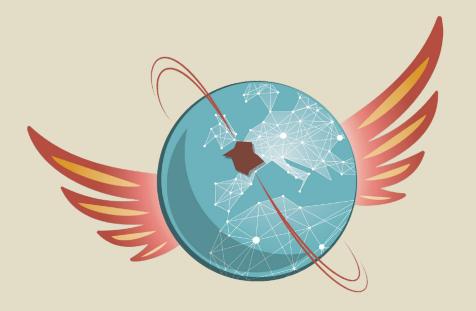
Ingredient	TM g	PS g	Diet – fattening pigs											
Corn fermented, 33% H ₂ O	670	15,2	75,5	74,2	75,2		75,7		50,0		50,0			
Sorghum fermented, 28% H ₂ O	720	12,3				75,5		77,0		50,0		50,0		
Wheat, Barley, Triticale	870	9-10							26,0	26,8	26,5	28,3	76,5	79,5
Soybean meal, 44% CP	870	8	21,7	20,0	21,0	18,1	20,0	13,5	18,0	15,5	14,5	9,0	13,0	2,0
Soybeans full fat, 19% EE	935	120			1,0	3,5			3,0	4,5			7,0	
Soybean expeller, 10% EE	945	64					1,5	6,5			6,0	9,5		15,0
Canola meal, 31% CP, 12% EE	900	38		3,0										
Premix	950	0	2,8	2,8	2,8	2,9	2,8	3,0	3,0	3,2	3,0	3,2	3,5	3,5
Content of PUFA, g/kg DM (88%)		ca.	16.2	17 1	47 E	17.0	17.0	17.0	17.2	16.0	17,1	17.0	16 7	17.2

Sch(Schwankungen möglich!)



Sorghum to lower PUFA in diets

A higher level of sorghum in diets of fattening pigs allows the incorporation of higher levels of soybean cake (nonGMO).



Priller

Thank you

Partners

