

SORGHUM, A KEY TO BUILD OUR FUTURE.

3RD EUROPEAN SORGHUM CONGRESS

THE SORGHUM

A committed industry for promising outlets

ОСТОВЕ 12[™]&13[™] ТО U L O U S E

2 0 2 1

The content of this promotion campaign represents the views of the author only and is his/her sole responsibility. The European Research Executive Agency (REA) do not accept any responsibility for any use that may be made of the information it contains.

Development of sweet and biomass sorghum hybrids for bioenergy production in Brazil Multidisciplinary Team

Multidisciplinary rean

Dr. Rafael Augusto da Costa Parrella

Sorghum Breeder

October 12 and 13, 2021

Embrapa Maize and Sorghum Sete Lagoas-MG, Brazil

Infrastructure for Bioenergy R&D SRD EUROPEAN SORGHUM CONGRESS

Cold Storage

Hydrolic press

Greenhouse

No-Till Plot Planter

Plot Forage Harvester

SORGHUM MATERIALS AT EMBRAPA: INNOVATION ASSETS

3RD EUROPEAN SORGHUM CONGRESS

Embrapa has developed genetic materials and production systems for different sorghum types and formed partnerships with a number of seed companies, the public R&D sector and energy companies

Grain Sorghum Crop Season 2020/2021

Area: 864,500 ha ↑

Productivity: 2.685 kg.ha-1 +

Production: 2,098,200 million t +

Conab, 2021 https://www.conab.gov.br/info-agro/safras

Sweet sorghum in sugarcane mill (cultivars and production systems)

Biomass sorghum for energy: electricity second generation ethanol and biogas

Bioenergy in Brazil

- 2nd Survey of the sugarcane crop (August 2021/2022-Conab);
- Area: 8.243 million hectares (4.3 +)
- Productivity: 71,821 t.ha-1 (5.5 ↓)
- Sugarcane production: 592,031 thousand tons (9.5% ↓)
- Sugarcane Ethanol Production: 25.8 billion liters (13.1% ↓)
- Corn Ethanol Production: 3.4 billion liters (80.3% ↑)
- **Biogas and Ethanol 2G**
- RenovaBio

Why Sorghum as a Source of Feedstock for Bioenergy Production?

- ⇒Fast cycle can be harvested in 120 to 180 days after planting;
- ⇒ Grass C4 Associates high productivity of biomass, fermentable sugars and starch;
- ⇒Sorghum production can be completely mechanized;
- Sorghum cultivation is established from seed (Cultural management and mechanized harvesting);
- ⇒ It has high water use efficiency, drought tolerance and high temperature adaptation;
- \Rightarrow Sorghum has favorable characteristics for conversion into 1G, 2G ethanol, cogeneration and biogas;

Sorghum for Bioenergy

3RD EUROPEAN SORGHUM CONGRESS

Energy Sorghum Breeding Strategies

3RD EUROPEAN SORGHUM CONGRESS

(1) Photo-Insensitive Sweet Sorghum Hybrid

(2) Photosensitive Sweet Sorghum Hybrid

(3) Photosensitive high lignin Biomass Sorghum

(4) Photosensitive low lignin Biomass Sorghum

osensi

Isolated Field in Short Day Environment to Produce Experimental Photosensitive Hybrids for Biomass for use in both long and short days

noto-insensitive

-lines

The content of this promotion campaign represents the views of the author only and is his/her sole responsibility. The European Research Executive Agency (REA) do not accept any responsibility for any use that may be made of the information it contains.

Scenarios for Bioenergy Sorghum in Brazil

- Sweet and Biomass sorghum is being proposed to be planted at the beginning of the rainy season (October to December) in areas of Sugarcane renovation to increase the period of industrial operation of large distilleries in Brazil;
- * Second Crop or "Safrinha" generally after soybeans

O sorgo é plantado e colhido na entressa	EIGY Cal	encar s de novembro a abril	-+++++++-	Ethanol P	roduction L
NOV · DEZ · JAN · FEV · MAR · 120 dias ►	ABR • MAI • JUN	• JUL • AGO • SE	T · OUT · NOV	7 mil	
**PI: Photoinsensitive e PS: Photosensitive		E Collecito de secos	- Calbaita da saas	litros	2,5 mil sorgo
FONTE EMBRAPA	Plantio de sorgo	Colheita de sorgo	Colheita de cana		litros

3RD EUROPEAN SORGHUM CONGRESS

Utilizing Sugarcane Distilleries for Sweet Sorghum Processing

Some Fine Tuning may be Necessary, but Minimal

Uses the same sugar cane harvester;

Distance from field to smaller distillery 50km;

Time between harvesting and processing less than 6 hours;

► 2012 to 2014 - Pilot results with low ethanol productivity disappointed industries in the sector;

 Low stalk productivity and low sugar content (Minimum: 50 t.ha-1 x 60L of ethanol.t-1).

CAMPAIGN FINANCED WITH AID FROM THE EUROPEAN UNION

Main Pests, Diseases and Weeds

3RD EUROPEAN SORGHUM CONGRESS

Fall armyworm (Spodoptera frugiperda)

Sugarcane drill (Diatraea saccharalis)

Sugarcane aphid (Melanaphis sacchari)

Elasmus caterpillar (Elasmopalpus lignosellus)

Weed control

Anthracnose

Rust

Hemitosporiosis

Ergot

Period of Industrial Utilization (PIU) (Embrapa Milho e Sorgo)

Minimum Parameters for PIU Total sugar (% juice): > 12,5% Extracted sugars (hyd. press): >80 Kg t⁻¹ Period > 30 dias (High Sucrose Desirable – Promotes longer PIU); Necessary for Industrial Planning

3RD EUROPEAN SORGHUM CONGRESS

Lodging: Reduces sugar content and increases impurity content

Fernandes et al., 2014

Susceptible to lodging

The content of this promotion campaign represents the views of the author only and is his/her sole responsibility. The European Research Executive Agency (REA) do not accept any responsibility for any use that may be made of the information it contains.

Pilot areas with sweet sorghum in Brazil in the 2019/2020 Crop Season

Santo Antonio Plant, Sertãozinho-SP – 94 DAP - 23ha F&H Seeds company, Jaborandi -BA – 94 DAP – 10 ha

3RD EUROPEAN SORGHUM CONGRESS

Evaluation of total reducing sugars, theoretical yield of ethanol and fresh biomass 25 cultivars of sweet sorghum in -Sete Lagoas - MG.

TRS = Total reducing sugars (mg.mL⁻¹)

TYE = Theoretical yield of ethanol (L.ton⁻) ARTx10x0,6480x0,85 – Considering an efficiency of 85% of the process.

FB = Fresh Biomass (t.ha⁻¹)

Averages followed by the same letter do not differ at the 5% level of significance by the Scott Knott test.

Genótipo	TRS		TYE		FB	
201837B01	133,38	а	73,46	а	75,29	а
201837B03	83,90	d	46,21	d	84,52	а
201837B04	81,13	d	44,69	d	93,33	а
201837B05	88,37	d	48,67	d	72,38	а
201837B06	99,85	С	55,00	С	77,19	а
201837B07	122,87	b	67,68	b	73,57	а
201837B08	98,88	С	54,46	С	87,67	а
201837B09	86,22	d	47,49	d	81,00	а
201837B10	100,48	С	55,35	С	71,52	а
201837B11	76,80	d	42,30	d	61,10	b
201837B12	91,69	С	50,50	С	61,33	b
201837B13	123,59	b	68,08	b	39,90	b
201837B14	147,53	а	81.26	а	71.24	а
201837B15	146,04	а	80,44	а	95,81	à
201837B16	128,26	b (70,65	b	89,43	a
201837B17	152,00	а	83,73	а	81,62	a
201837B18	130,60	b	71,94	b	78,76	а
201837B19	115,18	b	63,44	b	97,67	а
201837B2	96,30	С	53,04	С	78,29	а
201837B20	100,26	С	55,23	С	70,62	а
201837B21	103,83	С	57,19	С	62,52	b
CMSXS643	101,02	С	55,64	С	71,52	а
CMSXS646	108,84	b	59,95	b	69,62	а
BRS 511	89,93	d	49,53	d	54,19	b
BRS 508	107,62	С	59,28	С	52,86	b

"Minimum Economic SORCHUM, A KEY TO BUILD OUR FUTURE." Thresholds" for Sweet Sorghum Cultivars in Brazil, Now and in the Future

3RD EUROPEAN SORGHUM CONGRESS

ENJOY
IT'S FROM
EUROPE
0

	Phot	o Insens	itive	
Parameter	2012 Variety PI	2018 Variety PI	2021 Hybrid PI	Future Hybrid PS
Biomass Production (t ha ⁻¹)	> 40	> 50	> 60	>80
Total Sugar (% Juice)	>12.5	>12.5	> 14	> 14
Ethanol Production (L t ⁻¹)	> 60	> 60	> 70	> 70
Ethanol Production (L ha ⁻¹)	> 2400	> 3000	> 4200	>5600
PIU (days)	> 30	> 30	> 30	> 30

Demands for Biomass Sorghum in Brazil

► The Industry is researching raw material as an alternative to eucalyptus for steam production and energy cogeneration. Cane straw, Elephant grass (Pennisetum purpureum Schum), bamboo (Phyllostachys aureosulcata - yellow groove bamboo), Mombaça grass (Panicum maximum cv. Mombaça);

- Biomass to produce biogás;
- Biomass to produce second generation ethanol;
- Animal feed;

AMPAIGN FINANCED

E ELIROPEAN LINIO

Organic Ground cover (No-tillage);

3RD EUROPEAN SORGHUM CONGRESS

150 DAP

Productive potential of biomass sorghum hybrids

Season/cycle	Fresh Biomass (t.ha ⁻¹)	Dry Biomass (t.ha ⁻¹)
1ª Season - Pl (Cycle 110-130-Pl)	60 - 70	18 - 21
1ª Season - PS (Cycle 150-170-PS)	80 - 150	24 - 45
2ª Season - PS (Cycle 100-120-PS)	50 - 60	15 - 18

Partnership between EMBRAPA and COCAMAR to use of biomass sorghum 3RD EUROPEAN SORGHUM CONGRESS for direct boiler burning

Pictures: Rusti Federle (rusti.Federle@cocamar.com.br)

Implementation of a pilot area of 120 ha with biomass sorghum in this harvest season 2021/2022.

Estimate parameters for steam production (How many kg of sorghum to produce one kg of steam? Costs?)

Adjustments in Harvest and Logistics

SORCHUM, A KEY TO BUILD OUR FUTURE. Physicochemical and mechanical properties of sorghum pellets Biomass

Característica	Unidade	Resultado	Característica	Unidade	Resultado
Diâmetro	mm	6,12	Teor de carbono fixo	%	9,0
Comprimento médio	mm	14,62	Teor de matérias voláteis	% massa	79,6
Comprimento máximo	mm	30,16	Teor de cinzas	% massa	4,1
Comprimento mínimo	mm	3,53	Teor de umidade	% massa	7,3
N° de pellets/100g	unidades	224	Poder calorífico superior	J.g ⁻¹	17.662
Densidade aparente	g.cm ⁻³	0,658	Poder calorífico útil	J.g ⁻¹	15.269
Densidade básica	g.cm ⁻³	0,775	Densidade energética	GJ.m ⁻³	10,04
Durabilidade	% massa	98,37	Carbono	%	41,4
Finos < 3 mm	% massa	1,63	Hidrogênio	%	4,7
Enxofre	% massa	0,06	Oxigênio	%	0,7
Potássio	% massa	1,2	Cloro	%	0,3
Nitrogênio	% massa	0,7			

NIRs Calibration for high throughput characterization of sorghum for sugar, cellulose, hemicellulose and lignin

3000 9800 9200 8800 8400 8000 7600 7200 8800 8400 8000 8800 8200 4800 4400 4000 Numeros de onda (cm⁻¹)

Characterization of thermochemical properties (immediate composition and calorific value) for 25 experimental hybrids of conventional biomass sorghum (201840B) in Sete Lagoas -2019.

Parâmetro	HCV kJ/kg	NDF (%)	NDA (%)	CEL (%)	HEM (%)	LDA (%)
Média	17,16	79,58	52,88	46,47	26,7	6,410
Max	17,47	83,51	55,94	49,73	31,7	7,58
Min	16,7	73,14	46,58	40,92	24,1	5,14
DP	0,19	3,24	2,38	2,11	1,77	0,66

Biomass	Higher calorific value kJ kg ⁻¹
Biomass sorghum	17,16
Elephante grass	16,96
Sugar cane bagass	16,68
Brachiaria	16,31

MARAFON, A.C. et al. Poder Calorífico do Capim-Elefante para a Geração de Energia Térmica. 2016. 30p. (Embrapa Tabuleiros Costeiros. Boletim de pesquisa e desenvolvimento, 115).

SILVA, M.B., MORAIS, A. S. Avaliação energética do bagaço de cana em diferentes níveis de umidade e graus de compactação. XXVIII encontro nacional de engenharia de produção. Rio de Janeiro, 2008.

3RD EUROPEAN SORGHUM CONGRESS

Ethanol yields by cellulosic genotype

3RD EUROPEAN SORGHUM CONGRESS

Híbridos	L Et	tOH/	L Et	OH/	L EtOH/			
	ha Sl	FS ác.	ha SFS	ác.+bs	ha S	SSF		
		Couto M.		Couto M.		Couto M.		
	Sete Lagoas	Minas	Sete Lagoas	Minas	Sete Lagoas	Minas		
201556(B)002	3821,21 Aa	4220,28 Aa	11567,86 Aa	9232,21 Bb	9288,38 Aa	8286,97 Bb		
201556(B)003	3715,52 Aa	4196,27 Aa	6612,57 Ab	8080,50 Ab	7767,84 Ab	8511,44 Ab		
CMSXS7027	2806,64 Bb	3577,77 Ab	6671,33 Bb	8459,30 Ab	7423,88 Ab	7369,04 Ac		
CMSXS7016	3788,22 Ba	4520,18 Aa	7256,25 Bb	9316,34 Ab	9323,90 Ba	10330,07 Aa		
BRS716	3976,62 Aa	4401,47 Aa	10587,97 Aa	11838,46 Aa	8166,88 Bb	10820,36 Aε		
<i>bmr</i> Sorghum : 0,51 L/kg de biomassa Biomass Sorghum: 0.35 L/kg de biomassa								

Almeida et al. (2019) Characterization of cell wall polysaccharides and cellulosic ethanol potential in genotypes of sorghum biomass. **International Journal of Development Research**, v. 09, p. 26810-26820, 2019a.

Almeida et al. (2019) Composition and growth of sorghum biomass genotypes for ethanol production. **Biomass & Bioenergy**, v. 122, p. 343-348, 2019b.

Embrapa

Results of TS, VS and FS and biogas and methane production tests from biomass sorghum samples.

Genotype	TS (g/kg)	VS (g/kg)	FS (g/kg)	Biogas production (LNbiogás.kgsv ⁻¹)	Methane production (LNCH₄.kgsv ⁻¹⁾	Biogas production m³ de biogás.ton ⁻¹
bmr03	913,9	942,4	57,6	449	237	386,7
bmr18	915,9	936,6	63,4	431	223	369,7
BRS716	924,4	958,5	41,5	450	242	398,7

TS: total solids, VS: volatile solids and FS: fixed solids.

► 312.3 to 607.1 LNbiogás.kgsv⁻¹

(S.O. Dahunsi, A.T. Adesulu-Dahunsi, C.O. Osueke et al. / Energy Reports 5 (2019) 584– 593).

Embrapa

Bioenergy sorghum for Animal Feed

Comparison of means for agronomic characteristics and chemical composition (% in Dry Mass) of different biomass and forage sorghuns.

FORRAGEM		CARACTERÍSTICAS							
TIPO DE SORGO	Hight	Fresh Biomas	Dry Biomass	FDA	LDA	FDN	CZ	CEL	HEM
Biomassa bmr	m	t,ha ⁻¹	t,ha ⁻¹	%	%	%	%	%	%
CMSXS7500	4,20	75,71	22,77	42,3	4,6	71,4	6,9	37,7	29,2
CMSXS7502	3,98	75,78	17,85	43,3	4,6	72,6	9,5	38,8	29,3
CMSXS7501	3,96	70,63	18,69	42,8	4,3	71,9	10,4	38,5	29,2
CMSXS7527	4,45	80,98	21,83	43,7	4,6	74,8	8,4	39,1	31,1
CMSXS7515	4,54	77,23	24,25	41,7	5,0	71,9	7,0	36,7	30,2
Biomassa conventional									
BRS716	4,78	64,12	16,44	53,51	7,19	80,75	6,48	32,11	27,44
Forrageiro (FS)									
BRS 655	2,51	37,86	9,38	41,4	5,2	70,2	5,5	36,2	28,8
Volumax	2,88	49,00	11,68	41,5	5,3	71,5	8,9	36,2	30,00
<i>bmr</i> : nervura marrom									

QUEIROZ, F. E. et al., . Effect of row spacing and maturity at harvest on the fermentative profile, aerobic stability, and nutritional characteristics of biomass sorghum (BRS 716) silage in the semiarid region of Brazil. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, v. 50, p. 100-113, 2021.

Reproduction factors (RF) and reactions of sorghum genotypes to nematodes Meloidogyne incognita, race 3, M, javanica and Pratylenchus brachyurus, Embrapa Soja, May, 2019.

	Conétinos	M, in	cognita	M, jav	/anica	P, brachyurus	
	Genotipos	^{1/} RF	^{2/} Reaction	RF	Reaction	RF	Reaction
	Doko RC (soja)	50,23	S	72,27	S	-	-
	BRS Celeste (soja)	52,07	S	52,72	S	-	-
	BRS 317 (soja)	57,38	S	75,33	S	-	-
	201840B002	17,53	S	8,48	MR	0,00	R
	201840B005	3,03	MR	13,47	S	0,00	S
Deduction of	201840B008	7,23	MR	29,45	S	1,00	MR
Reduction of	201840B011	1,53	R	5,08	MR	2,00	S
sovbean	201840B012	0,87	R	2,28	R	0,50	MR
	201840B018	9,75	S	6,08	MR	1,00	MR
complex	201840B021	2,88	MR	19,95	S	0,50	MR
nematodes	201840B022	7,22	MR	20,42	S	0,50	MR
nematodes	201840B023	10,48	S	7,15	MR	2,00	S
	201840B024	11,83	S	2,78	R	1,50	S
	201840B025= PS	24,43	S	25,48	S	1,00	MR
	AGRI002E (Sinop)	15,63	S	12,07	S	2,00	S
	BRS 373 (sorgo gran,)	1,82	R	0,43	R	0,00	R
_	BRS 380 (sorgo gran,)	2,25	R	0,48	R	1,50	S
Emorapa	BRS 716 (Sinop)	2,28	R	17,88	S	2,00	S
	BRS P Negra (Sinop)	2.48	MR	7.22	MR	0.00	R

Organic Cover for notillage systems

3RD EUROPEAN SORGHUM CONGRESS

Mechanized Harvesting of Biomass Sorghum

3RD EUROPEAN SORGHUM CONGRESS

Final Remarks - Take Away

Sorghum has great potential to meet demand for quality biomass for bioenergy production;

We Now have Four Types of High Productive and High Quality Energy Sorghums Released or Ready for Release;

We are Interested in Collaborative Research & Development and Business Opportunities with Both Public and Private Sectors.

3RD EUROPEAN SORGHUM CONGRESS

Embrapa Maize and Sorghum Team

Name	Area	E-mail
Cynthia Damasceno	Molecular Biology of Plants	cynthia.damasceno@embrapa.br
Cícero Menezes	Grain Sorghum breeder	cicero.menezes@embrapa.br
Maria Lúcia Simeone	Chemical Analysis	marialucia.simeone@embrapa.br
Maria Marta Pastina	Genetics and Plant Breeding	marta.pastina@embrapa.br
José Avelino Rodrigues	Forage Sorghum breeder	avelino.rodrigues@embrapa.br
Jurandir Magalhães	Molecular Genetics and Genomics	jurandir.magalhaes@embrapa.br
Rafael Parrella	Bioenergy Sorghum breeder	rafael.parrella@embrapa.br
Robert Schaffert	Molecular Genetics and Plant	robert.schaffert@embrapa.br
	Breeding	
Valéria Queiroz	Food Safety, Nutrition and Health	valeria.vieira@embrapa.br

Financial Support

Finep

Thank you

Embrapa

Partners

