

Genomics-informed sorghum improvement

Ian Godwin

Create change

2nd European Sorghum Congress 2018

GENOMICS INFORMED SORGHUM IMPROVEMENT

Better yield, better quality, better resilience

- Genomics and key breeding traits
- New breeding technologies
 CRISPR/Cas9 genome editing
- Focus on end-use quality
- Yield and yield components
- Future crop design

2nd European Sorghum Congress 2018

It's a major staple for >500 million

And through an animal intermediary

You can make these

Create change

And you can make bio-ethanol and beer from sorghum

So what's not to like?

Create **beer**

THE PLANTS THAT CREATE GREAT DRINKS THE WORLD'S AUTHOR OF WICKED PLANTS NEW YORK TIMES BESTSELLER TA


"If we had a way to accurately tally the world's vast and complex drinking practices, sorghum is clearly one of the world's most imbibed plants." (Stewart, 2013)

Create change

Sorghum: least digestible cereal for monogastrics (humans, pigs etc)

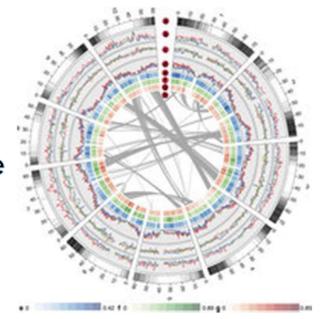
Iow starch and protein digestibility

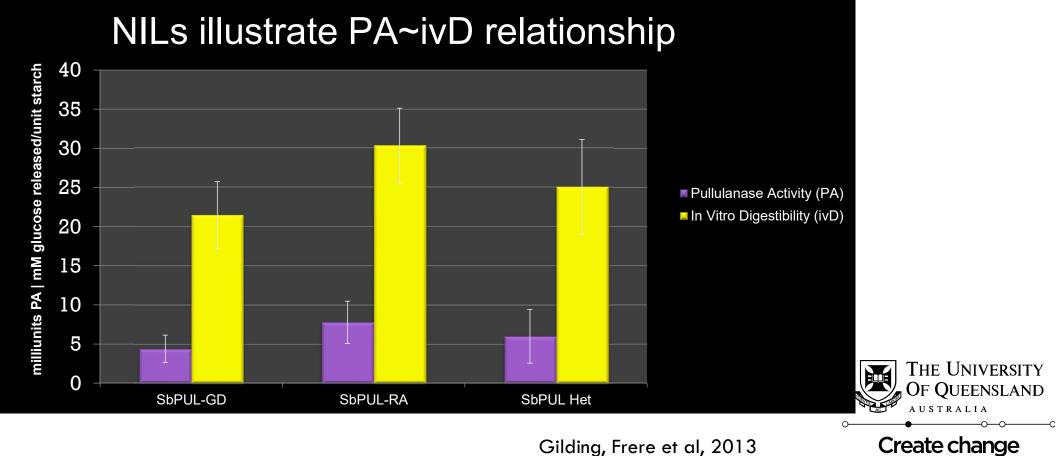
- protein:starch matrix is protease resistant
 Cysteine-rich leads to S-S bonding
- Small/variable grain size

Whatever the quality – birds love it!

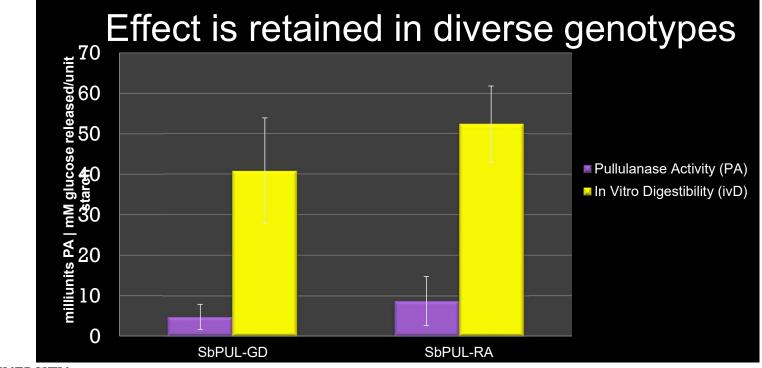
Exploiting genetic diversity

□ Association genetics for improving a trait of importance


- □ GWAS in 400 diverse sorghums
- Sorghum starch digestibility


Association with digestibility

- Across the panel, 1 genomic region appeared to confer improved digestibility
- Near the distal end of the short arm of chromosome 6
- A candidate gene was located here pullulanase – a starch debranching enzyme



Pul activity digestibility

Gilding, Frere et al, 2013

Association holds up in another population

THE UNIVERSITY OF QUEENSLAND

108 inbreds or landraces from Ethiopia

Starch debranching – changes starch structure

ARTICLE

Received 30 Aug 2012 | Accepted 4 Jan 2013 | Published 12 Feb 2013

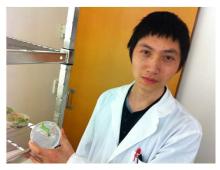
DOI: 10.1038/ncomms2450

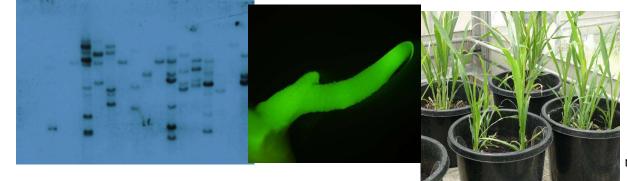
OPEN

Allelic variation at a single gene increases food value in a drought-tolerant staple cereal

Edward K. Gilding^{1,*}, Celine H. Frère^{2,*}, Alan Cruickshank³, Anna K. Rada⁴, Peter J. Prentis⁵, Agnieszka M. Mudge¹, Emma S. Mace³, David R. Jordan⁶ & Ian D. Godwin¹

Pullulanase sorghum lines


- NILs grown in field trials under bird-netting
- Replicated poultry feeding trials in progress at Sydney University


Genomics can inform Transgenic and Editing approaches

Guoquan Liu 20-25% efficiency Liu and Godwin, 2012, Plant Cell Rep.

Create change

Natural *β*-kafirin **null mutants**

Theor Appl Genet (2010) 121:1227–1237 DOI 10.1007/s00122-010-1383-9

ORIGINAL PAPER

β-kafirin is not essential

That makes it a target to play with!

- Induct brotem
- Higher digestibility
- Ogi porridge in West Africa

Transgenics and genome editing

Approaches to improve grain quality BIGGER GRAIN and MORE DIGESTIBLE PROTEIN

- 1. Overexpress a synthetic β -kafirin (Liu et al JCS 2018)
- 2. Change the way proteins fold (RNAi-foldase)
- 3. Manipulate G-proteins associated with grain size

G protein gamma-subunits

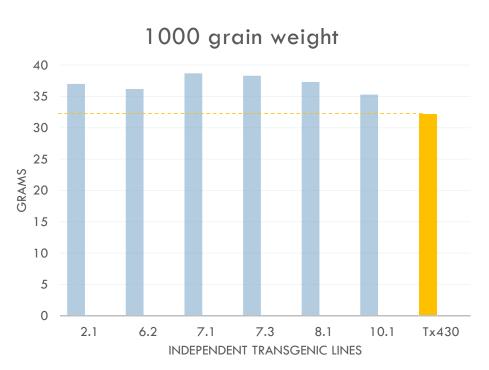
- 1. Overexpression
- 2. RNAi silencing
- 3. Overexpression of truncated genes
- RNAi silencing (~50-70% downregulation) from independent transgenic events
 - ✤ GGC1 (GS3)- mean 7% increase in seed size
 - Same as the QTL in NAM
 - ✤ GGC2 mean 7% increase in seed size
 - ✤ GGC3 (DEP1) mean 9% increase in seed size

Grain size characteristics

10 seeds

RNAi GGC1 (GS3) No reduction in grain number 9-12% increase in TKW

"Foldase RNAi lines: larger grain, higher protein



Tx430 Foldase RNAi 8.1

Field trials summer 2018

Inbred lines

In grain fill in SE Queensland

Gene editing in sorghum – our progress

Brown Midrib sorghum – lignin biosynthesis (rice U6 promoter)

Sorghum albinism

(rice v sorghum U6/U3 promoters)

Latest: beta-kafirin knockouts – higher protein content

Create change

Gatton campus and Research Farm 80 km from Brisbane

27 transgenic lines – 5 genes manipulated 2018

UQ + NuSeed + QId Dept of Agriculture and Fisheries collaboration

Aims: Larger Grain or More Grain or Higher Protein?

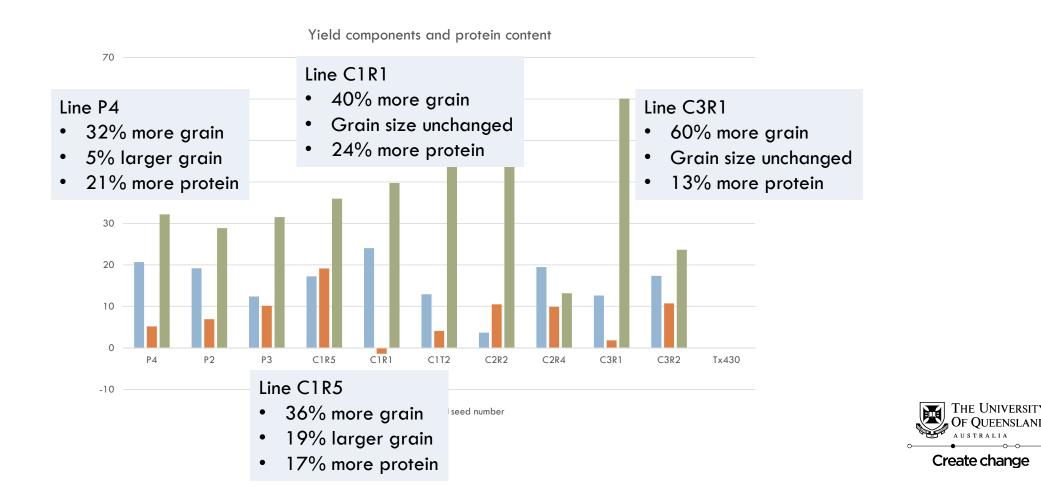
Some transgenic lines RNAi-GGC1 and GGC3

GGC1

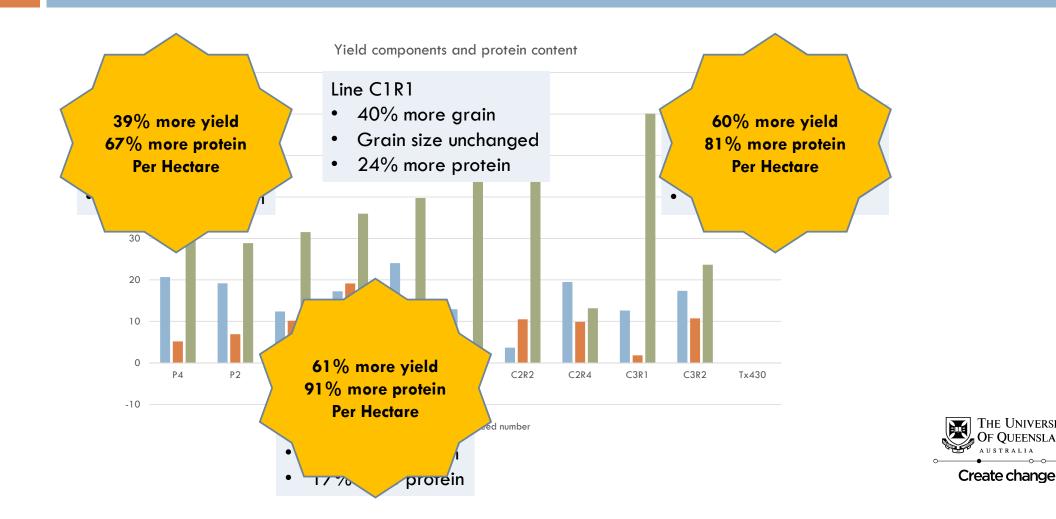
GGC3

Tx430 control

Transgenic Lines – RNAi-foldase

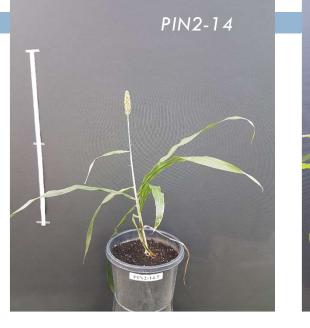


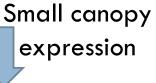
P2 125 cm Plant height


Ρ4 146 cm Tx430 control 119 cm

Higher Protein + all the good yield stuff!

More protein per grain, more protein per hectare

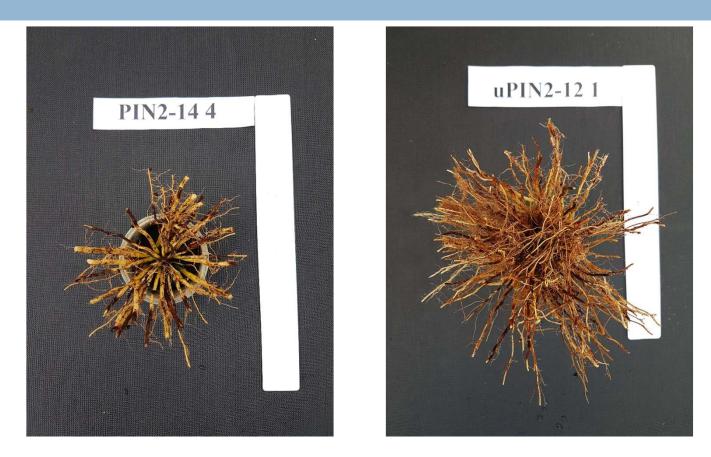



THE UNIVERSITY

OF OUEENSLA

PIN gene expression and plant architecture

1.PIN genes2.Plasticity3.Pleiotropy



uPIN2-12

expression

Andy Borrell, Guoquan Liu, Albert Wong

PIN genes confer 'nodal root number' plasticity in sorghum

Small root number

Large root number

Genomics + GM/editing + physiology ⇒ better sorghum

Special thanks to the Sorghumheads:

Guoguan Liu

Yuri Trusov

Karen Massel

Basam Tabet

Brad Campbell

Belinda Worland

Kyle Lamont

Albert Wong

Donald McMurrich

Create change

Grains Research & Development Corporation

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Government

Aus

Australian Government

Australian Research Council

Dave Jordan UQ QAAFI Bob Gilbert UQ QAAFI Glen Fox UQ QAAFI Emma Mace UQ QAAFI Andy Borrell UQ QAAFI Alan Cruickshank DAF-Q Erik van Oosterom UQ QAAFI Jimmy Botella UQ Susanne Schmidt UQ Ed Gilding UQ IMB Bruce Hamaker Purdue Scott Bean USDA Kansas Pete Prentis QUT Shuaishiai Tai BGI Shenzhen Rod Snowdon JLU-Giessen Evans Lagudah CSIRO Janet Davies QUT Luguang Wu UQ Hai-Chun Jing CAS Beijing Lu Xiaochen CAAS Shenyang Clive Lo Hong Kong Univ Chris Haire NuSeed Nanna Bjarneholt Copenhagen Jeigin Li Anhui S&T Univ

Collaborators