

2nd European Sorghum Congress 2018

LIMITATIONS AND BREEDING CHALLENGES FOR FORAGE SORGHUM ABOVE 48° LATITUDE

New Genetics for forage Sorghum for Europe were required – adaptation very rare

- Cool temperatures at long day Plants remain vegetative, or have late flowering and ripening
 - At sowing No or poor emergence
 - > Multiple emergences and tillering cause variation in ripening
 - At and after flowering No or poor
 - Pollen fertility
 - Grain formation
 - Grain filling
 - Germination

- Poor young plant vigor
- Lodging
- Moist conditions at harvest
- Improvement of other key traits

- Poor and late soil cover, poor competition with weeds
- Complicates harvest and reduces forage yield and quality
- Affects grain quality negatively
- Forage quality traits including grain quality

High Latitude Location for Sorghum Breeding Farm (Hoeve) Dierkensteen (HD), The Netherlands (NL)

Congress 2018

Areas in the Netherlands are above 48° Latitude and have a Temperate Climate with a Long Day, only during summer

At a day length between 16 and 17 hours, Temperature and genetics determine whether: Sorghum becomes generative and produces viable seed and whether possible Short Day requirements are fully off-set (Hypothesis)

(Purseglove, J.W. 1972, Tropical Crops. Monocotyledons, p.270)

19-Nov-18

Near Critical Soil Temperature for Emergence in Areas above 48° Latitude

Before and after emergence, Temperate and Land Climate, may have below critical temperatures of 12° C in soil and air

Air Temperature for Growth and Seed set, in Areas above 48° Latitude

Even in Warm period several cold nights Oostburg, the Netherlands, 14-27 September 2018

Temperate areas above 48° Latitude have:

- Relatively Cool seasonal temperatures average below 21° C
 - Slowing down growth / in particular of young plant
- Below critical night temperatures from flowering onwards,

resulting in: Poor seed set and

Variable quality of seed

19-Nov-18

Sorghum breeding scenario at Hoeve Dierkensteen, NL

- 2005-2008 NL Very Few Southern African Inbred restorer lines show some viable grain in NL
- ► 2008 1st Crossing in NL of best selections (sweet stem x grain type), hand pollination
- 2008/09 F1 hybrid planted in counter season (CS)
- 2009 F2 sown in NL, Inbreeding with open pollination and selection
- ► 2009/10 F3 produced in CS
- 2010 F2 F4 planted in NL and F5 in CS open pollination
- 2011 F3 F6 planted in NL and F7 in CS- open pollination
- ▶ 2012 and 2015 -Testing of F3 onwards in NL with selfing
 - Multilocational Tests of F7 Indicative Results see table next slide
- Since 2014 First hybrids made with commercial and public female lines
- ► Since 2015 1 ha tests on different soils
- Start of Variety registration for areas above 48° NL
 - under French expertise in Southern France

Sorghum at Hoeve Dierkensteen 14 September 2015

Sorghums Developed at Hoeve Dierkensteen

2nd European Sorghum Congress 2018

19-Nov-18

Viable Seed set in Denmark

with assistance of Prof. Søren K. Rasmussen

2nd European Sorghum Congress 2018

19-Nov-18

Explorative Yield & feed value Sorghums and Maize After N. van Eekeren – Louis Bolk, V-Focus, 2014: 16,17

Nr				
S1	Piper	Sorgum bicolor x Sudanese		SC 1= Seed Company 1 American Genetic
S2	Sole	Sorgum bicolor x Sudanese	Early	SC 2, KWS
S3	Bovilal	Sorgum bicolor x Sudanese	Early	SC 3, Saaten Union
S4	Sweet California	Sorghum bicolor		SC4= Barenburg
S5	Zerberus	Sorghum bicolor	Medium early	SC2
S6	L3	Line	Early grain	Walter de Miliano
S7	L7	Line	Early grain	Walter de Miliano
S9	L11	Line	Biomass late	Walter de Miliano
Maize	Messago	Zea mais		

Explorative	tons dry	Starch	Sugars	Starch +	Raw	Raw cell	Raw	Raw	vcos	VCOS	Phosphorus	Favorable	
data 2013	matter/ha			Sugars	Protein	material	ash	fat		I&I		values for	
Piper	9	89	97	186	118	273	54	23	66	60	3	Sorghum	
Sole	15	212	64	276	93	243	41	25	66	60	2,1	compared	
Bovilal	9	163	100	263	98	239	47	21	69	63	2,3	to Maize	
Sweet													
California	13	98	233	331	91	210	52	16	81	79	2,6		
Zeberus	17	35	190	225	85	302	51	11	71	64	2		
L3	13	186	120	306	84	238	51	17	71	68	2,1		
L7	18	264	113	377	95	168	48	23	75	72	2,3		
L11	12	170	141	311	105	238	48	17	72	69	2,5		
Messago	20	251	84	335	70	227	34	20	74		1,9		

2nd European Sorghum Congress 2018

19-Nov-18

Cold tolerance does not secure seed set above 48° latitude

None of the cold tolerant sorghums from Lubbock (Tx) had viable seed viable set at 51° NL, not even supposedly day length neutral widely adapted sorghums like Macia (far left), neither when sown 7 May (right 2m plot) or 1 June (left 2 m)

19-Nov-18

Progress in Sorghum breeding at Hoeve Dierkensteen, NL

Achievements of our breeding program

Plant height was between 1,5 up to 2,9 m

Heads per plant - between 1 and 8

Fresh plant weights of 40 to 100 mt/ha

VCOS T&T was up to 72%

At full maturity, sweet stem

Brix for sugar in dry matter of up to 27%, reduced by seed set

What remains to be improved

- Tall plants are late and show lodging susceptibility

- Tillers gives unequal ripening and plant height difference
- Stem thickness was between 0,6 and 1,3 cm Thick stem (> 1,5 cm) was rare
 - High Biomass was associated with late and lodging
 - High digestion was associated with high sugar and high starch

Sorghum research

Sorghum Counter Season or Off-season

- ACCI, University of KwaZulu-Natal South Africa
- African Seed Company Sierra Leone
- University of Denmark

Cold tolerance and adaptation to long day

- ▶ USDA, Sorghum Cold Tolerant Research USA
- University of Denmark

Research Northern Europe

- ▶ Louis Bolk Netherlands and ILVO Belgium Sorghum as a fodder crop
- Wageningen University and Research –Fodder quality by soil type and science quality testing
- Rusthoeve Netherlands Sorghum agronomy and networking for economic use of sorghum products
- University of Denmark agronomy quality
- Others commercial options

Required

- Research on seedling vigor and cold tolerance (frost tolerance, earlier sowing)
- Facilitation for introduction of a new crop
 - Publicity Crop and products not known to legislation, farmers and few consumers
 - European and Local regulations

3rd European Sorghum Conference in Rotterdam, The Netherlands

Summary of Progress with Sorghum breeding at Hoeve Dierkensteen, NL

Within one or more crossing generations over a period of 10 years :

Viable grain of different colors was produced from 51° NL up to 55° NL

- White, red, colored and 'black'
 - Attention is required for grain mold in white grain
- A Dry Matter Biomass production of up to 18 mt per ha and higher in hybrids and tall lines
 - Levels of Protein in forage of (8 to 11%) and Sugars (11 to 14%)
 - Crude Protein of grain of up to 14%

Grain yields varied between entries: 1 to 7,5 mt/ha

Lines produced 6 to 7 mt/ha of grain in Chili in 2015