THE PRODUCTION OF SORGHUM IN WATER-RESTRICTED CROP SYSTEMS IN THE USA

Brent Bean, Director of Agronomy, USA Sorghum Checkoff
OUTLINE OF PRESENTATION

- Why Sorghum
- Sorghum Yield Components
- Local Climate and Crop Water Use
- Sorghum Water Use
- Sorghum in Cropping Systems
WHY SORGHUM?

- Drought tolerant crop, but responds well to additional water
- Long planting window
- Uses the same farming equipment as maize and other crops
- Rotational benefits with other crops
 - Yield increase to proceeding broadleaf crops (soybean)
 - Disease, insect and nematode reduction
- Can plant in narrow rows for weed suppression
CONTRIBUTION TO YIELD

Limited Water:
• Seeds per panicle – 63%
• Panicles per ha – 30%
• Seed mass – 7%

Plenty of Water:
• Seeds per panicle – 40%
• Panicles per ha – 32%
• Seed mass – 23%
Harvest Index is the ratio of grain produced VS total above ground plant mass

Range: 0.35 to 0.55
SEEDING RATE

TWO YEAR AVERAGE YIELD AT THREE PLANT POPULATIONS

<table>
<thead>
<tr>
<th>Plant Population</th>
<th>Beltsville, KS</th>
<th>Manhattan, KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants ha⁻¹</td>
<td>Grain Yield, t ha⁻¹</td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td>6.33</td>
<td>6.55</td>
</tr>
<tr>
<td>150,000</td>
<td>6.65</td>
<td>6.83</td>
</tr>
<tr>
<td>225,000</td>
<td>6.71</td>
<td>6.72</td>
</tr>
</tbody>
</table>
SEEDING RATE BASED ON YIELD POTENTIAL

<table>
<thead>
<tr>
<th>Seeding Rate per hectare</th>
<th>Yield Potential or Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>75,000</td>
<td>3,000 – 4,750 lb/ac</td>
</tr>
<tr>
<td></td>
<td>3.4 – 5.3 t ha(^{-1})</td>
</tr>
<tr>
<td>125,000</td>
<td>4,750 – 7,550 lb/ac</td>
</tr>
<tr>
<td></td>
<td>5.3 – 8.5 t ha(^{-1})</td>
</tr>
<tr>
<td>175,000</td>
<td>7,550 - 10,000 lb/ac</td>
</tr>
<tr>
<td></td>
<td>8.5 – 11.2 t ha(^{-1})</td>
</tr>
<tr>
<td>225,000</td>
<td>Greater than 10,000 lb/ac</td>
</tr>
<tr>
<td></td>
<td>Greater than 11.2 t ha(^{-1})</td>
</tr>
</tbody>
</table>
Sorghum Growing Areas in USA

Sorghum 2015
Planted Acres by County
for Selected States

U.S. Department of Agriculture, National Agricultural Statistics Service
PRECIPITATION MAP OF USA
SORGHUM WATER USE

DEPENDS ON LOCAL CLIMATE

<table>
<thead>
<tr>
<th>Climate Factor</th>
<th>Crop Water Need (ET-Evapotranspiration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>Temperature</td>
<td>Hot</td>
</tr>
<tr>
<td>Humidity</td>
<td>Low (dry)</td>
</tr>
<tr>
<td>Wind speed</td>
<td>Windy</td>
</tr>
<tr>
<td>Sunshine</td>
<td>Sunny</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate Factor (July)</th>
<th>Amarillo, Texas, USA</th>
<th>Bucharest, RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (c)</td>
<td>32.7</td>
<td>29</td>
</tr>
<tr>
<td>Humidity (AVG Daily)</td>
<td>78% High, 32% Low</td>
<td>96% High, 42% Low</td>
</tr>
<tr>
<td>Wind speed Avg (m/s)</td>
<td>6 m/s</td>
<td>2 m/s</td>
</tr>
<tr>
<td>% Median Cloud Cover</td>
<td>25%</td>
<td>35%</td>
</tr>
<tr>
<td>% AVG Sunlight hr/Day</td>
<td>11.03</td>
<td>10.5</td>
</tr>
</tbody>
</table>
SORGHUM WATER USE EFFICIENCY AT DIFFERENT RAINFALL OR IRRIGATION LEVELS

<table>
<thead>
<tr>
<th>Irrigation Amount (% of ET)</th>
<th>Water Use Efficiency kg m(^{-3})</th>
<th>Water Use Efficiency lb ac-in(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.45</td>
<td>102</td>
</tr>
<tr>
<td>25</td>
<td>1.23</td>
<td>279</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>420</td>
</tr>
<tr>
<td>75</td>
<td>1.86</td>
<td>422</td>
</tr>
<tr>
<td>100</td>
<td>1.70</td>
<td>385</td>
</tr>
</tbody>
</table>
• **Growing Point Differentiation**: ~ 30 days past emergence. Panicle size begins to be determined.

• **Boot**: Rapid growth and nutrient uptake. Panicle enclosed in flag leaf.

• **Half Bloom**: 50% of plants in a field are blooming.
Sorghum Daily Water Use and Key Growth Stages

- Days After Planting:
 - 0: Panicle Initiation
 - 30: Rapid Growth
 - 60: Seed Number Determined
 - 90: Flowering
 - 120: Grain Fill

- Stages:
 - Mature
 - Grain Drying
 - Grain Filling
 - Boot
 - Flowering
 - Rapid Growth
 - Seed Number Determined
 - Panicle Initiation

DAILY WATER USE
DAILY WATER USE OF MAIZE AND SORGHUM
20 YEAR AVERAGE 1991-2010, AMARILLO, TX

Total Seasonal Water Use
- Maize – 875 mm
- Sorghum – 680 mm

Daily Water Use, mm

2-May 2-Jun 2-Jul 2-Aug 2-Sep 2-Oct

DAILY WATER USE
SORGHUM AND MAIZE RESPONSE TO WATER

![Graph showing yield vs. total water for sorghum and maize.]

- **Maize**:
 - Yield: 2.65 kg/m³
 - Yield at 10 t/ha (160 bu/ac): 10 t/ha
 - Yield at 6.67 t/ha (106 bu/ac): 6.67 t/ha

- **Sorghum**:
 - Yield: 2.12 kg/m³
 - Yield at 10 t/ha (160 bu/ac): 9 t/ha
 - Yield at 6.67 t/ha (106 bu/ac): 5.8 t/ha

- **Yield in t/ha**: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
- **Total Water in mm**: 25, 127, 229, 330, 432, 533, 635, 737, 838, 940
YIELD VS ET RELATIONSHIP FOR CROPS IN KANSAS, USA

<table>
<thead>
<tr>
<th>Crop</th>
<th>Max. ET</th>
<th>Threshold ET</th>
<th>Slope of Yield vs ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>635</td>
<td>275</td>
<td>3.29</td>
</tr>
<tr>
<td>Grain Sorghum</td>
<td>535</td>
<td>175</td>
<td>2.32</td>
</tr>
<tr>
<td>Sunflower</td>
<td>560</td>
<td>140</td>
<td>0.66</td>
</tr>
<tr>
<td>Winter wheat</td>
<td>610</td>
<td>255</td>
<td>1.22</td>
</tr>
<tr>
<td>Soybean</td>
<td>610</td>
<td>200</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Dryland or low rainfall
- Rotation with wheat
 - 11 month fallow between crops
- Rotation with cotton or soybeans
 - Reduction in disease, weeds and nematodes

Limited Irrigated or regions with moderate rainfall
- Rotation with soybean
- Double crop with sorghum planted after wheat harvest
- Split irrigation circle
 - Maize/Sorghum
 - Cotton/Sorghum

Fully Irrigated or regions with high rainfall
- Rotation with soybean or cotton
Sorghum Evapotranspiration
Long-term Average
(1997–2011)

Day of Year

mm day

1-5 May
15-5 May
1-Jun
15-Jun

(Rajan and Maas)
USE IN OPTIMIZING IRRIGATION CAPACITY

- Utilize planting dates to apply irrigation during key growth stages
- Since sorghum will tolerate short periods of drought, more water can be applied to the maize if needed
DAILY WATER USE

MAIZE VS SORGHUM

mm day$^{-1}$

15-Apr
29-Apr
13-May
27-May
10-Jun
24-Jun
8-Jul
22-Jul
5-Aug
19-Aug
2-Sep
16-Sep
30-Sep
14-Oct

Maize
Sorghum
Sorghum water use efficiency is improved by using a seeding rate that matches the environment’s yield potential.

Sorghum water use depends on local climate.

Sorghum has a maximum water use of approximately 75% of maize.

Sorghum yields better than maize in low rainfall environments.

Sorghum benefits the yield of broadleaf crops in a rotation.

Sorghum can be planted with other crops to maximize water use efficiency in fields with limited irrigation water capacity.