

1ST EUROPEAN SORGHUM CONGRESS

WORKSHOP

INNOVATIVE RESEARCH TOWARDS GENETIC PROGRESS

ESSENTIAL RESEARCH PRIORITIES

Patrice JEANSON,Sorghum breeder, PROSORGHO / EUROSORGHO FRANCE

A non-profit association with 7 seed companies involved in the breeding and / or sales of sorghum varieties.

Missions:

- Upstream: joint work on the genetic improvement of sorghum
- Development of partnerships with other stakeholders of the sorghum industry: ARVALIS, CIRAD, INRA.
- Downstream: promotional activities for the development of sorghum cultivation in France

ESSENTIAL RESEARCH PRIORITIES

THE USUAL AXES OF BREEDING

- Vield ¥
- Earliness
- Quality: no tannin for grain
- Agronomic comportment
- Diseases

THE CLIMATE CHANGE

BUCHAREST

3-4 NOVEMBER 2016

THE CLIMATE CHANGE

Hemispheric Temperature Change

INCREASED CO2 LEVEL

INCREASED CO2 LEVEL

IMPACTS ON PLANT GROWTH

Carbon dioxide: beneficial to plant growth

Mean % yield increases produced by a 300 ppm increase in atmospheric CO2 concentration

461

ppm

782

ppm

1218

ppm

C3 CEREALS 48,8%

C4 CEREALS 20 %

IMPACTS ON PLANTS GROWTH

Breeding for tolerance to high temperatures at flowering stage

Patrice JEANSON, Essential research priorities

BUCHAREST 3-4 NOVEMBER 2016

SORGHUM

WATER AVAILABILITY

Patrice JEANSON, Essential research priorities

ESSENTIAL RESEARCH PRIORITIES

BREEDING FOR DROUGHT STRESS

MAINS STRATEGIES

- Early sowing Drop the germination temperature threshold (12°c recommended currently to 9°c)
 - Breeding for early vigor in the seedling stage
- Breeding for global comportment to drought
 - Stay green
 - Stomatal regulation
 - Root development
 - Growth rate
 - Water efficiency

BREEDING FOR DROUGHT STRESS

	Irrigated	Non irrigated
Corn		
Yield (t MS/ha)	24.8	9.0
Rainfall (mm)	610	330
Efficiency (kg MS/ha/mm)	40.6	27.4
Grain sorghum		
Yield (t MS/ha)	17.1	13.7
Rainfall (mm)	479	350
Efficiency (kg MS/ha/mm)	35.6	39.2

<u>Table 1</u>: Compared efficiencies of water use by maize and by grain sorghum, with or without irrigation (Lemaire et al., 1991).

WATER NEEDS FOR SORGHUM VS CORN

(source tawc 2005-2010)

IMPACTS OF CLIMATE CHANGES

INCREASED PEST POPULATIONS

HELICOVERPA ARMIGERA

- Damages on panicle,
- Eat the reproductive organs and the kernel at milk stage.

BORER

- Eat the marrow of sorghum stalks especially sweet sorghum
- Kill the plants and increase lodging

IMPACTS OF CLIMATE CHANGE

INCREASED PEST POPULATIONS

APHIDS

Eat the phloem sap

Red and necrotic spots on the leaves

General necrosis and plant death

Sugarcane aphid

Greenbug

Corn leaf aphid

Breeding for tolerant varieties, genetic could be a solution

Patrice JEANSON, Essential research priorities

- Attack at basis of stem (collar) and roots, important lodging observed with fast drying of the plant and the panicle
- Favorable factors: very hot temperature, very dry situation, high density of plants and high nitrogen level
- No specific genetic answer
 - Breeding on global plant comportment
 in stress environment after flowering stage.

Genomic breeding

OTHER PESTS

FUSARIUM: USE OF MOLECULAR BREEDING

Détection of QTLs for Fusarium resistance

HIGH DIGESTIBLE SORGHUM FOR SILAGE

Due to the climatic evolution sorghum can replace corn as silage for the animals

NEW USES

- HIGH GRAIN TYPE
- SWEET SORGHUM

- BMR SORGHUM:

Low lignin (BMR genes) Very good digestibility, UFL between 0,9 to 1,1 Harvested at 30 to 35% of dry matter Recommended for dairy farmers

NEW USES

HIGH DIGESTIBLE SORGHUM FOR SILAGE

Patrice JEANSON, Essential research priorities

NEW USES

HUMAN FOOD

Gluten free cereal with good nutrition value

Energetic value of grain sorghum in France 2014

Evolution of energetic value between 2009 to 2014

Necessity of very low tannin varieties

BUCHAREST

3-4 NOVEMBER 2016

THANK YOU FOR YOUR ATTENTION

