

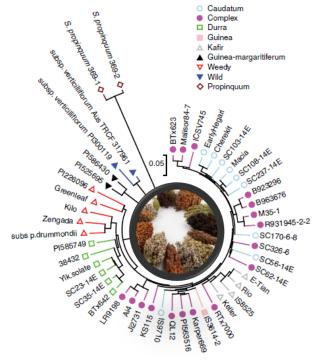
1ST EUROPEAN SORGHUM CONGRESS

WORKSHOP

INNOVATIVE RESEARCH TOWARDS GENETIC PROGRESS

TACKLING NEW CHALLENGES FOR EUROPEAN SORGHUM THROUGH GENETICS AND NEW BREEDING STRATEGIES

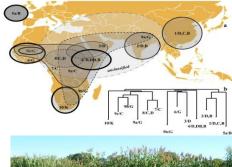
OPTIMIZING GENETIC VALUE PREDICTION USING MOLECULAR MARKERS


WHOLE GENOME SEQUENCING: AN ACCELERATOR OF SORGHUM GENETICS AND BREEDING

Btx623 sequencing

Paterson et al 2009

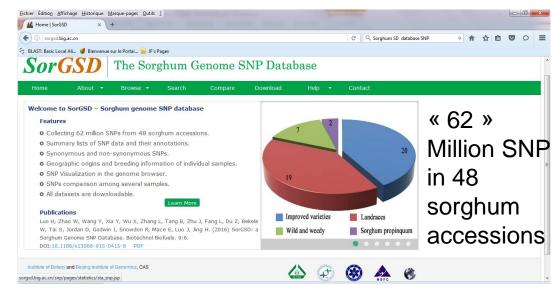
Enlarging the diversity coverage



Mace et al 2013

To 1000's Genomes:

« Terra » Project



Mockler et al 2016

NUCLEOTIDE DIVERSITY INFORMATION

Btx623 : ATGCATGC ATGC
Keller : ATGCCTGC C
Tx430 : ATGCATGC C
Ji2731 : ATGCCTGCATGC
E-Tian : AAGCATGCATGC
Rio : AAGCCTGCATGC
SNP Indels

Luo et al 2016

- Polymorphism Database and Next Generation Sequencing (NGS) methodologies
 - Characterize the diversity (Jeff's talk)
 - Support breeding efforts (Marker ASSISTED breeding)

TAKING ADVANTAGE OF GENETIC INFORMATION TO ACCELERATE GENETIC GAINS (PREDICT PHENOTYPES)

• Response to selection: $R_x = I_x * h_x^2 * Sd_x$ (x = grain yield in low Inputs)

With I_x: Selection intensity applied on trait_x

h_x²: heritability of trait_x,

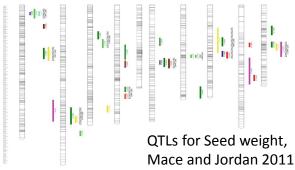
Sd_x: Phenotypic standard deviation of trait_x

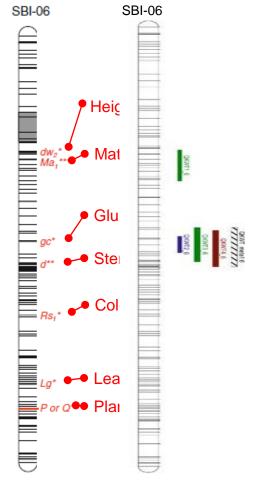
Indirect selection (select trait, based on selection on trait, (y= grain yield in on-station trial)):

$$CR_x = i_y * h_x * h_y * r_{g_{xy}} * Sd_x$$

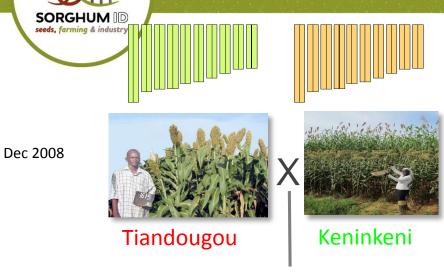
With $r_{g_{xy}}$: genetic correlation between traits \dot{x} and \dot{y}

- Molecular markers allow maximizing h_y . Assuming a high genetic correlation $(r_{g_{XY}})$ you can expect $CR_x >> R_x$
 - Challenge: identify the genomic regions (Markers) controlling the traits of interest (high $r_{g_{xy}}$) and combine them in new varieties

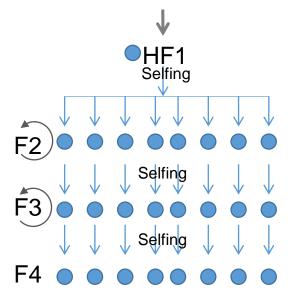



MAJOR GENES AND QTLS (BIPARENTAL) HAVE ALREADY BEEN IDENTIFIED

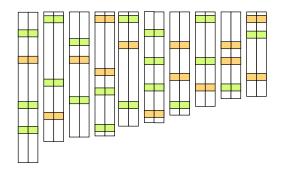
Major Genes



- Some genomic regions affecting quantitative traits
 - QTLs in biparental populations
 - Grain yield / size...
 - Grain quality
 - Biomass yield
 - Biomass quality
 - Biotic and Abiotic stress



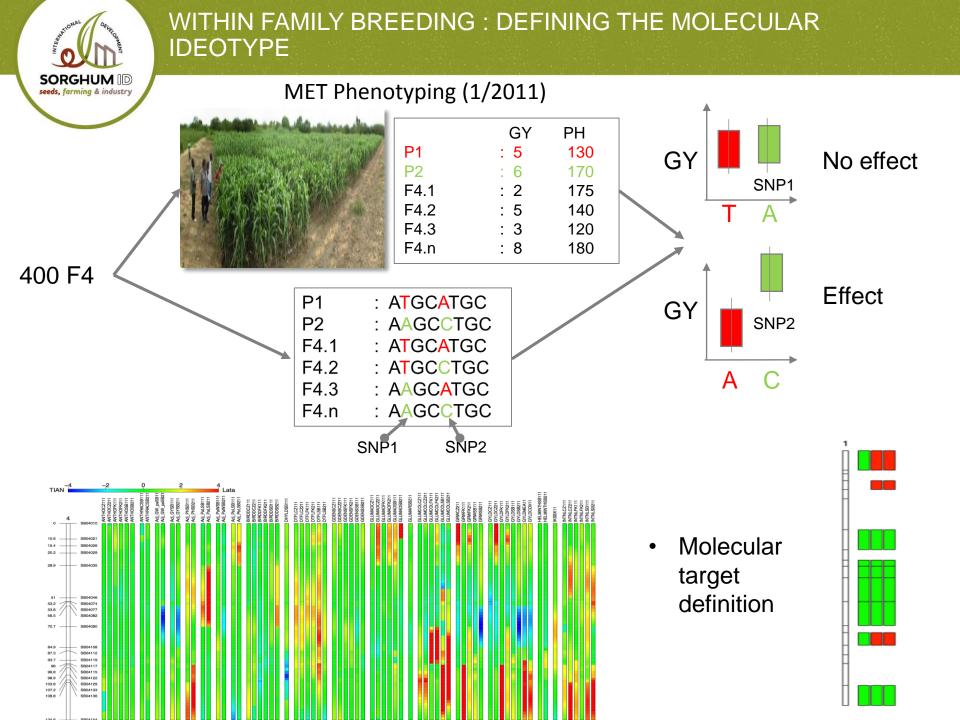
MARKER ASSISTED RECURRENT SELECTION APPLIED TO WITHIN FAMILY BREEDING FOR GRAIN YIELD AND QUALITY IN MALI

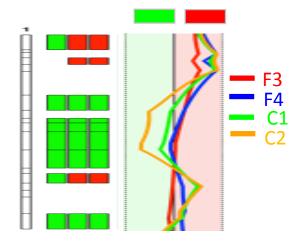


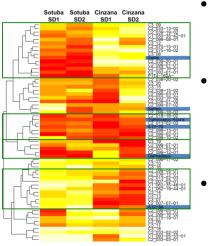
 Solution: identify the genomic regions / favorable alleles and combine them

- Multi-trait selection
- Combine favorable alleles from the 2 parents

What we want : combine « 33 » regions


 Not reachable through genealogic / phenotypic selection : million of progenies would be required...



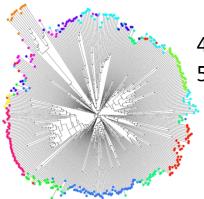


WITHIN FAMILY BREEDING: CONVERGING TOWARDS THE MOLECULAR IDEOTYPE SORGHUM D seeds, farming & industry 400 F4 Genotype

Evolution towards molecular ideotype (6/2011 - 1/2013)

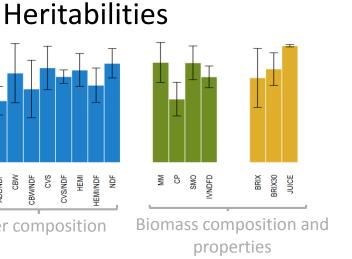
Field evaluation (On-Station and on-Farm)

- Comparison with local varieties
- Within family MARS works (faster, more accurate)
- But information is not easily transfered to broad base populations


GWAS: TRACKING DOWN THE GENES TO MONITOR ALLELES OF INTEREST IN BROAD BASED PANELS

Ingrid Vilmus

Multi-Environments / Panels


Fiber composition

413 accessions 5 trials (100 - 362 genotypes)

- •2 Montpellier
- •2 Mali
- •1 Mali Off Season

: ATGCATGCATGC Btx623 : ATGCCTGC Keller : ATGCATGC Tx430 : ATGCCTGCATGC Ji2731 : AAGCATGCATGC E-Tian : AAGCCTGCATGC Rio

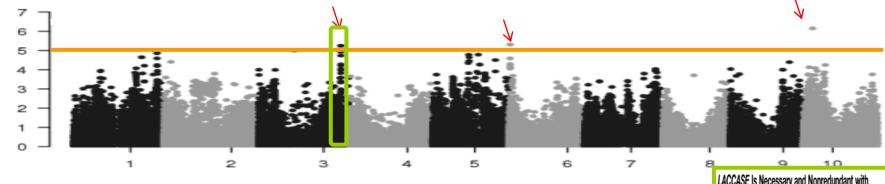
1.0

8.0

0.6

0.4 0.2

0.0


DSW PHT DM

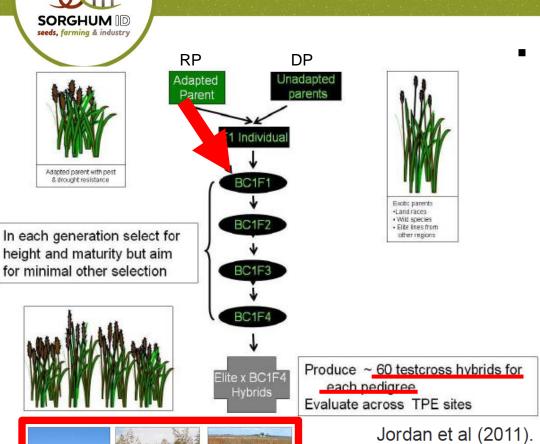
Biomass Yield

GWAS: GENE IDENTIFICATION, BUT NEEDS FOR MULTI-ENVIRONMENTS ASSESMENTS

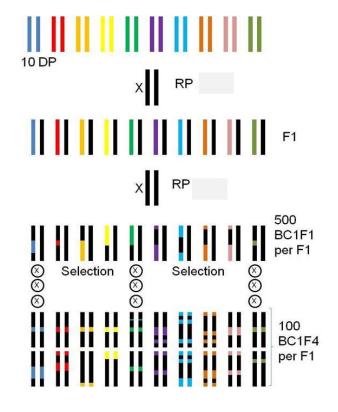
GWAS for Cell Wall lignin content

Ch ro m	Pos(pb)	LOD	Gènes candidats				
			Début	Fin	Fonction		
3	67 247 746	5.25	67 242 057	67 244 587	Phenylpropanoids /lignin		
6	1 273 618	5.31	1 208 904	1 216 444	TF/TF MYB		
10	7 794 293	6.15	7 751 084	7 755 352	TF/TF MADS		

	LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis®					
Í	Giao Zhan, "Jin Nakashima," Fang Chen, "I Yarbin Yin," Churuiang Fu; "Jiand Zano, Yi Whoo E and Girband A. Disson 12					



- Refined genomic regions / genes identification
- GXE + Transfer to breeding programmes (exotic lines...) + Power issues (allelic frequencies)



Adapted parent with pest & drought resistance

MERGING GENETIC AND BREEDING OBJECTIVES FOR BROAD BASED PANELS: COMBINING BIPARENTAL AND GWAS MAPPING

And high resolution genetic mapping

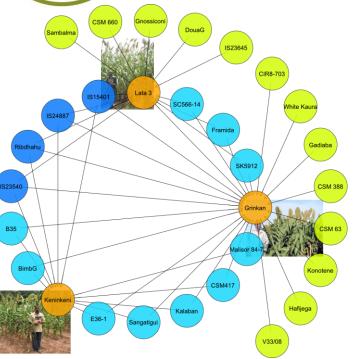
Highly Relevant for breeding!!

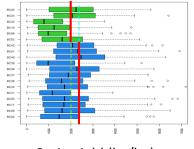
> See also Morris et al 2015 : NAM for Btx623 and Tx430

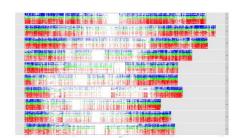
S. arundinaceum

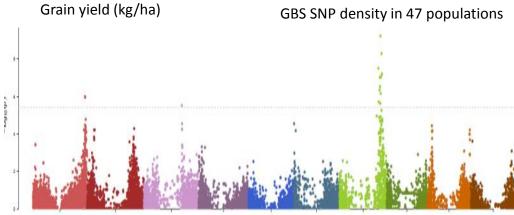
F1

Backcross progeny


BC-NAM : GRAIN YIELD AND QUALITY FOR WESTERN AFRICA





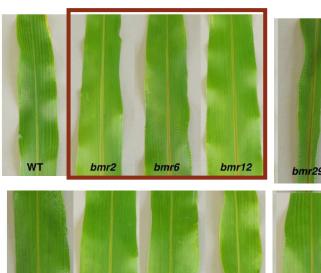


BC Nested Association Mapping

47 populations, 4717 BC₁F₄ families

Direct variety development through PPB

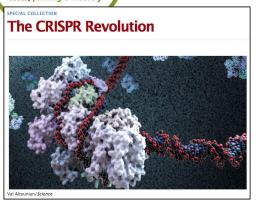
				•	•		•
	Nom	Pedigree	Dioila	Koutiala	Mande	MOYEN	Rang
	Fadda	12A//Lata Hybrid Check	94	242	99	138	1
	Lagri	Lata// Grin-8-39-1-1	87	193	92	120	3
Name Acres all	Essi	Lata// SC566-6-44-1-1	102	172	89	122	2
Marine Real State	Lango	Lata//Ngol-3-6-1-1	89	150	77	104	11
Property of the Annual Confession of the Confess	Tieble	CSM335 Local check	72	148	75	100	14
	Djala	Lata// DouaG-1-2-1-1	96	172	71	110	7
	Lani	Lata// Gnos-7-13-1-1	81	194	67	107	8
	Samboi	ni Lata// Samb-5-1-1-1	82	196	67	106	9
	Dili	Lata//Ridb-3-9-1-1	94	183	57	102	12



CREATING NEW VARIABILITY THROUGH CHEMICAL MUTATIONS

EMS Mutant libraries development

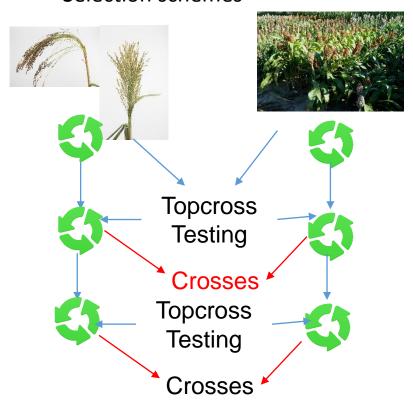
EMS treatment M₃ plants Jiao et al 2016 : 6400 M4 mutants 256 mutants lines sequenced. A ressource for gene validation


Identification of mutants relevant for breeding

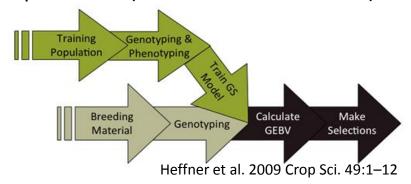
Sattler et al 2014

CREATING NEW VARIABILITY THROUGH GENOME EDITING

Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice


Wenzhi Jiang¹, Huanbin Zhou², Honghao Bi², Michael Fromm³, Bing Yang² and Donald P. Weeks^{1,*} 2013

- CRISPR Cas9 can be used for :
 - Introduction of large deletions / Rearrangements
 - Introduction of single point mutations
- Interest for Gene function validation ! => acceleration of gene discovery and development of breeding tools
- New Breeding Technology (Creation of targeted variability)



FUTURE GENOMIC ASSISTED BREEDING STRATEGIES

- Heterotic groups identified
 - Towards dedicated Reciprocal Recurrent Selection schemes

- Marker assisted breeding strategies
 - Classical QTL / GWAS detection and allele follow up and stacking
 - Genomic selection: 1) Calibration of genotyic value based on markers and ii) prediction (no interest in « Genes »)

- Take advantage of the New Breeding Technologies (NBT)
 - Functional validation
 - Variability development

SORGHUM GENETICS AND BREEDING IN EU : PERSONAL THOUGHTS

- Sorghum breeding is efficient: an asset to provide producers with genetic materials adapted to their needs and the ones of the end-users (See Jeanson's Talk)
- European sorghum breeding has specificities (target environments). It requires specific research efforts
- Works performed in the US / Africa / India / Australia... are highly valuable and have to be considered
- No need to COORDINATE. But huge benefits to COLLABORATE / AGREGATE results and EXCHANGE EXPERIENCES: we need a place for that !!

PEOPLE AND FUNDINGS

Gilles Trouche

Jean-François Rami

Sorghum Biomass Projects

QUESTIONS?

